• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 13
  • 12
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 178
  • 178
  • 108
  • 50
  • 39
  • 21
  • 20
  • 20
  • 16
  • 15
  • 15
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Investigação sísmica na planície costeira de Bertioga (SP) / Seismic Investigation in the Bertioga Coastal Plain

Barbosa, Emilio Eduardo Moreira 09 March 2012 (has links)
Este trabalho avalia a potencialidade do emprego da sísmica de reflexão para mapear os depósitos sedimentares quaternários e o embasamento na planície costeira de Bertioga (SP). Foi feita uma aquisição CMP em uma linha perpendicular à costa e aplicado o fluxograma de processamento convencional utilizado em sísmica de reflexão. Na região estudada estão presentes o embasamento ígneo-metamórfico pré-cambriano e sedimentos de origem marinha, estuarino-lagunar/lacustre-paludial, fluvial e de encosta, de idades pleistocênicas e holocênicas. São descritos os procedimentos adotados para a escolha da área dos ensaios, para os testes de análise de ruídos, e para a aquisição CMP. Nas condições da área, a fonte de impacto tipo marreta forneceu melhores resultados em comparação com a fonte do tipo compactador de solos utilizando-se a técnica Mini-Sosie. O método mapeou dois contatos importantes com boa continuidade: o topo rochoso e uma interface que separa camadas sedimentares dentro das unidades do Quaternário. Além disso, permitiu inferir a existência de uma falha normal afetando o embasamento e sedimentos. Para a obtenção de uma seção geológica final, os resultados da sísmica de reflexão foram integrados aos resultados obtidos por outros autores do mesmo registro sísmico utilizando os métodos de tomografia por ondas P refratadas e o da análise multicanal de ondas superficiais. A sísmica de reflexão se mostrou uma potencial ferramenta para ser aplicada em ambientes costeiros, podendo trazer importantes subsídios para estudos da evolução geológica. / This work evaluates the potentiality of the seismic reflection method to mapping quaternary sedimentary deposits in the Bertioga (SP) coastal plain. A CMP acquisition was done in a perpendicular line to the coast and it was applied a conventional processing flow used in shallow reflection seismic. The geology of the study area comprises the Pre-Cambrian basement formed by igneous-metamorphic rocks, which is covered by Holocene and Pleistocene sediments of marine, estuarine-lagoonal/lacustrine-marshy, fluvial and of hillside origins. Its described the procedures adopted to choose the study area, to execute the walkaway noise tests and to acquire and analyse the CMP data. For the local geological conditions the sledge hammer gave better results compared to vibrator source used with the Mini-Sosie method. The seismic reflection method has mapped two important interfaces, the basement and the contact between two different sedimentary units, besides a geologic fault. Aiming the elaboration of a final geological section, the seismic reflection results were complemented with the results of other authors with the same data recorded, using Tomography Applied to P Refracted Waves and Multi Channel Surface Waves Analysis. The seismic reflection method shows to be a potential tool to be used in coastal environments and can contribute to the geological evolution study of the coastal plain.
142

Investigação sísmica na planície costeira de Bertioga (SP) / Seismic Investigation in the Bertioga Coastal Plain

Emilio Eduardo Moreira Barbosa 09 March 2012 (has links)
Este trabalho avalia a potencialidade do emprego da sísmica de reflexão para mapear os depósitos sedimentares quaternários e o embasamento na planície costeira de Bertioga (SP). Foi feita uma aquisição CMP em uma linha perpendicular à costa e aplicado o fluxograma de processamento convencional utilizado em sísmica de reflexão. Na região estudada estão presentes o embasamento ígneo-metamórfico pré-cambriano e sedimentos de origem marinha, estuarino-lagunar/lacustre-paludial, fluvial e de encosta, de idades pleistocênicas e holocênicas. São descritos os procedimentos adotados para a escolha da área dos ensaios, para os testes de análise de ruídos, e para a aquisição CMP. Nas condições da área, a fonte de impacto tipo marreta forneceu melhores resultados em comparação com a fonte do tipo compactador de solos utilizando-se a técnica Mini-Sosie. O método mapeou dois contatos importantes com boa continuidade: o topo rochoso e uma interface que separa camadas sedimentares dentro das unidades do Quaternário. Além disso, permitiu inferir a existência de uma falha normal afetando o embasamento e sedimentos. Para a obtenção de uma seção geológica final, os resultados da sísmica de reflexão foram integrados aos resultados obtidos por outros autores do mesmo registro sísmico utilizando os métodos de tomografia por ondas P refratadas e o da análise multicanal de ondas superficiais. A sísmica de reflexão se mostrou uma potencial ferramenta para ser aplicada em ambientes costeiros, podendo trazer importantes subsídios para estudos da evolução geológica. / This work evaluates the potentiality of the seismic reflection method to mapping quaternary sedimentary deposits in the Bertioga (SP) coastal plain. A CMP acquisition was done in a perpendicular line to the coast and it was applied a conventional processing flow used in shallow reflection seismic. The geology of the study area comprises the Pre-Cambrian basement formed by igneous-metamorphic rocks, which is covered by Holocene and Pleistocene sediments of marine, estuarine-lagoonal/lacustrine-marshy, fluvial and of hillside origins. Its described the procedures adopted to choose the study area, to execute the walkaway noise tests and to acquire and analyse the CMP data. For the local geological conditions the sledge hammer gave better results compared to vibrator source used with the Mini-Sosie method. The seismic reflection method has mapped two important interfaces, the basement and the contact between two different sedimentary units, besides a geologic fault. Aiming the elaboration of a final geological section, the seismic reflection results were complemented with the results of other authors with the same data recorded, using Tomography Applied to P Refracted Waves and Multi Channel Surface Waves Analysis. The seismic reflection method shows to be a potential tool to be used in coastal environments and can contribute to the geological evolution study of the coastal plain.
143

Crustal structure of the Queen Charlotte Transform Fault Zone from multichannel seismic reflection and gravity data

Scheidhauer, Maren 29 May 1997 (has links)
The Queen Charlotte Fault system is a segment of the North America - Pacific plate boundary. From 45 Ma - 5 Ma, plate motion has been primarily translational. Since 5 Ma, transpression has been the dominant mode of interaction. The plate boundary west of the Queen Charlotte Islands is characterized by an approximately 30- km wide terrace, flanked to the west by a topographic trough and to the east by the seismically active Queen Charlotte Fault. At 53.4°N the fault bends eastward and the terrace becomes wider and discontinuous, forming triangular shaped highs and intervening lows. Approximately 300 km of multichannel seismic reflection and gravity data along and across the Queen Charlotte Fault off Dixon Entrance were collected as part of the ACCRETE experiment in 1994. Structural interpretation of the five new profiles reveals the presence of faults and folds within the terrace, which form an angle of 20° to the strike of the Queen Charlotte Fault. The direction of these structures corresponds to the trend of the plate boundary south of the bend and west of the Queen Charlotte Islands, implying that through complex compression and shear, material must have been carried from south to north along the margin during oblique plate motion. Based on this observation and on forward gravity modeling, which places limits on the possible plate configuration at depth, a four-dimensional model has been developed to explain the temporal and spatial evolution of structural styles in this region. Considering the amount of shortening that must be accommodated within the past 5 Ma (a maximum of 100 km), a model of an underthrusting Pacific plate is preferred over one of pure upthrusting. About 5-6 Ma ago, when transpression began, oceanic crust was flexed and thrust upward at the plate boundary to eventually reach a steady-state configuration of a subducting slab. Fractured basement rock and consolidated, deformed sediments underlie the terrace and form its foundation. As a result of strain partitioning, the terrace is now decoupled and moves both parallel to the continent and perpendicular to the underthrusting Pacific plate. North of the bend in the Queen Charlotte Fault, underthrusting north of it occurs obliquely along preexisting fractures at the base of the terrace. The repetitive pattern of triangular terrace slivers is the result of continuing uplift and shear along these trends. Active tectonism influences sediment dispersal and creates traps. A N-S trending fault was also identified in the trough segment and possibly involves oceanic basement. Its origin is thought to be due to distributed shear that was transmitted across the plate boundary. Sea-floor spreading magnetic anomalies trend north-south as well. Along these zones of weakness, synthetic strike-slip faults of a transpressional strain ellipse could has been initiated during early stages of subduction. Reactivation of such faults may occur when oceanic crust approaches the outer terrace boundary, as is the case in the study region. Gravity modeling confirmed the existence of thin (24 km) continental crust and an increase in oceanic Moho dip beneath the terrace, which is topped by unconsolidated sediments and underlain by material of near-basement densities. It could not be determined using gravity modeling whether oceanic crust exists beneath the continent, but if it does, it must be welded to the North American plate in shallow subduction. / Graduation date: 1998
144

Insights into Contractional Fault-Related Folding Processes Based on Mechanical, Kinematic, and Empirical Studies

Hughes, Amanda 17 September 2012 (has links)
This dissertation investigates contractional fault-related folding, an important mechanism of deformation in the brittle crust, using a range of kinematic and mechanical models and data from natural structures. Fault-related folds are found in a wide range of tectonic settings, including mountain belts and accretionary prisms. There are several different classes of fault-related folds, including fault-bend, fault-propagation, shear-fault-bend, and detachment folds. They are distinguished by the geometric relationships between the fold and fault shape, which are driven by differences in the nature of fault and fold growth. The proper recognition of the folding style present in a natural structure, and the mechanical conditions that lead the development of these different styles, are the focus of this research. By taking advantage of recent increases in the availability of high-quality seismic reflection data and computational power, we seek to further develop the relationship between empirical observations of fault-related fold geometries and the kinematics and mechanics of how they form. In Chapter 1, we develop an independent means of determining the fault-related folding style of a natural structure through observation of the distribution of displacement along the fault. We derive expected displacements for kinematic models of end-member fault-related folding styles, and validate this approach for natural structures imaged in seismic reflection data. We then use this tool to gain insight into the deformational history of more complex structures. In Chapter 2, we explore the mechanical and geometric conditions that lead to the transition between fault-bend and fault-propagation folds. Using the discrete element modeling (DEM) method, we investigate the relative importance of factors such as fault dip, mechanical layer strength and anisotropy, and fault friction on the style of structure that develops. We use these model results to gain insight into the development of transitional fault-related folds in the Niger Delta. In Chapter 3, we compare empirical observations of fault-propagation folds with results from mechanical models to gain insight into the factors that contribute to the wide range of structural geometries observed within this structural class. We find that mechanical layer anisotropy is an important factor in the development of different end-member fault-propagation folding styles. / Earth and Planetary Sciences
145

BOTTOM SIMULATING REFLECTORS ON CANADA?S EAST COAST MARGIN: EVIDENCE FOR GAS HYDRATE.

Mosher, David C. 07 1900 (has links)
The presence of gas hydrates offshore of eastern Canada has long been inferred from estimated stability zone calculations, but the physical evidence is yet to be discovered. While geophysical evidence derived from seismic and borehole logging data provides indications of hydrate occurrence in a number of areas, the results are not regionally comprehensive and, in some cases, are inconsistent. In this study, the results of systematic seismic mapping along the Scotian and Newfoundland margins are documented. An extensive set of 2-D and 3-D, single and multi-channel, seismic reflection data comprising ~45,000 line-km was analyzed for possible evidence of hydrate. Bottom simulating reflectors (including one double BSR) were identified at five different sites, ranging between 300 and 600 m below the seafloor and in water depths of 1000 to 2900 m. The combined area of the five BSRs is 1720 km2, which comprises a small proportion of the theoretical stability zone area along the Scotian and Newfoundland margins (~635,000 km2). The apparent paucity of BSRs may relate to the rarity of gas hydrates on the margin or may be simply due to geophysical limitations in detecting hydrate.
146

HIGH-FLUX GAS VENTING IN THE EAST SEA, KOREA, FROM ANALYSIS OF 2D SEISMIC REFLECTION DATA.

Haacke, R. Ross, Park, Keun-Pil, Stoian, Iulia, Hyndman, Roy D., Schmidt, Ulrike 07 1900 (has links)
Seismic reflection data from a multi-channel streamer deployed offshore Korea reveal evidence of hydrateforming gases being vented into the ocean. Numerous, localised vent structures are apparent from reduced seismic reflection amplitude, high seismic velocities, and reflector pull-up. These structures penetrate upward from the base of the gas hydrate stability zone (GHSZ) and are typically several hundred metres wide, and only a few hundred metres high. Underlying zones of reduced reflection amplitude and low velocities indicate the presence of gas many kilometers below the seabed, which migrates upward through near-vertical conduits to feed the vent structures. Where the local geology and underlying plumbing indicates a high flux of gases migrating through the system, the associated vent structures show the greatest change of reflector pull-up (the greatest concentration of hydrate) to be near the seabed; where the local geology and underlying plumbing indicates a moderate flux of gases, the greatest change of reflector pullup (the greatest concentration of hydrate) is near the base of the GHSZ. The distribution of gas hydrate in the high-flux gas vent is consistent with the recent salinity-driven model developed for a rapid and continuous flow of migrating gas, while the hydrate distribution in the lower-flux vent is consistent with a liquid-dominated system. The high-flux vent shows evidence of recent activity at the seabed, and it is likely that a substantial amount of gas is passing, or has passed, through this vent structure directly into the overlying ocean.
147

Seismic stratigraphy of the northern KwaZulu-Natal upper continental margin.

Shaw, Michael John. January 1998 (has links)
This study presents the interpretation of Edo-Western and Sparker seismic geophysical data acquired on the northern KwaZulu-Natal upper continental margin by various organisations since 1981. Five seismic sequences are recognised and these are traceable across the entire length of the study area. The oldest is interpreted as a late Cretaceous marine sequence (Sequence A), probably the offshore equivalent of the St. Lucia Formation exposed onshore. This sequence is overlain by a progradational, probable late Tertiary shelf sequence (Sequence B) onlapping in places against the underlying marine sequence. The outer portion of this sequence on the upper continental slope is characterised by complicated reflection termination patterns indicating the possible presence of discreet sequences within this shelf and slope unit. These shelf and slope sediments are overlain by a thin (less than 20m) reworked and eroded Pleistocene shelf unit (Sequence C), itself overlain by linear Pleistocene aeolianites (Sequence D) in places. The youngest sequence observed is the Holocene unconsolidated sediment wedge (Sequence E) on the inner shelf, attaining thicknesses of greater than 20m in places. The various sequences were mapped out and sediment isopach maps were produced (wherever possible) as well as an overall geological subcrop map of the study area. 150 kilometres of shallow penetration Edo Western seismic records acquired off the Sodwana Bay continental shelf were interpreted. Two sediment types are recognised, namely consolidated beach rock/aeolianite and unconsolidated Quaternary shelf sand/bioclastic reef derived sediment. In places, accumulations of bioclastic sediment in subaqueous dune troughs which have been subsequently buried by migrating bedforms manifest themselves on seismic records as dark semi-continuous reflectors beneath the migrating bedform. Close inshore, seismic records show prominent reflectors interpreted as consolidated sediment beneath varying thicknesses of unconsolidated sediment. Close to the shelf break (occurring at approximately -60m), seismic interpretation indicates that thin beach rock developments perch directly upon unconsolidated shelf sand, with the beach rock having been eroded through in places to expose unconsolidated sediment beneath. A sediment thickness map for this area was compiled from the seismic data. The limited penetration of the Pinger system necessitated "greater-than" values being used in many areas. Greatest sediment thicknesses occur in subaqueous dune fields where unconsolidated sediment thickness is at least 11 m. In inshore areas absent of subaqueous dune fields, sediment thicknesses are typically low, varying between 1 and 3m. A prominent submerged dune ridge close inshore limits substantial unconsolidated sediment build-up to landward of this feature. On the seaward side substantial build-up is limited by the action of the Agulhas Current which is actively transporting sediment into the head of submarine canyons which incise the continental shelf at Sodwana Bay. This study shows that on the northern KwaZulu-Natal continental shelf where there is a dearth of unconsolidated Quaternary sediment, the Edo Western seismic system is a useful tool for discerning thin veneers of unconsolidated sediment less than 4m thick. When considering the overall low volumes of unconsolidated sediment present on the shelf, this hitherto unconsidered volume of sediment constitutes an important part of the shelf sediment budget. Submarine landslide features observed on sparker seismic records are described and discussed. Submarine landslides are present which affect a) Sequences A and B, b) Sequence B only and c) Sequence A only, ages of these sediment failures can thus be inferred as being either post- Late Cretaceous or post- Late Tertiary. Offshore Kosi Bay, submarine landslide features affecting Sequence A are buried by unaffected Sequence B sediments, indicating a post- Late Cretaceous to pre- Late Tertiary age of occurrence. Style of failure tends towards mass flow in those submarine landslides in which Sequence B only sediments are affected, while those in which Sequence A is affected exhibit some slide features indicating a greater degree of internal coherency of these sediments compared to Sequence B. Slope stability analysis of a submarine landslide feature offshore St. Lucia Estuary Mouth indicates the failed sediment mass would have been stable under static conditions and that external dynamic forces such as storm waves or seismic activity would have been necessary to induce failure. It is demonstrated that the Zululand earthquake of 1932 would have exceeded the intensity necessary to induce sediment failure and this event should therefore be considered as a possible cause. Seismic evidence of fluvial incision/subaerial exposure at the boundaries between Sequences A and B and C and E are further evidence of lowered sea-levels probably during the Oligocene and Late Pleistocene. The position of the incision into Sequence C relative the present course of the Mkuze River indicates the possibility that this incision could represent the palaeo-outlet of this river. Seismic expression of 3 submarine canyons in the study area indicate that they are currently undergoing active headward erosion, independent of any direct modern fluvial influence. In the case of Ntabende Canyon, a nearby continental shelf incision postulated to be the palaeo-Mkuze outlet indicates that provision of terrigenous material to this portion of the continental shelf could well have accelerated mass wasting processes within the canyon itself. This submarine canyon could therefore have progressed more rapidly to a relatively mature phase of development. Subsurface structure indicates the lack of any post- Late Tertiary fault features beneath the canyons, thus excluding faults active in post- Late Tertiary times as a developmental factor. It is shown that the overall, external morphology of the KwaZulu-Natal upper continental margin is strongly influenced by seismic stratigraphic relationships, with the main influencing factors being outcrop position of the various sequences and depositional angle of sediments of which a sequence is comprised. External morphology has also been greatly modified in places by mass-wasting processes. It is demonstrated also that relating the observed seismic stratigraphy to onshore geological cross sections is problematic due to the distances involved and lack of confident offshore dates for the seismic sequences observed. Seismic relationships observed contribute to an understanding of relative sea-level movements since the Late Cretaceous and the overall geological evolution of the northern KwaZulu-Natal upper continental margin, details of which are discussed. / Thesis (M.Sc.)-University of Natal, Durban, 1998.
148

A Study of the Herald-Phillipstown Fault in the Wabash Valley using Drillhole and 3-D Seismic Reflection Data

Kroenke, Samantha E. 01 August 2011 (has links)
In June 2009, a 2.2 square mile 3-D high resolution seismic reflection survey was shot in southeastern Illinois in the Phillipstown Consolidated oilfield. A well was drilled in the 3-D survey area to tie the seismic to the geological data with a synthetic seismogram from the sonic log. The objectives of the 3-D seismic survey were three-fold: 1.) To image and interpret faulting of the Herald-Phillipstown Fault using drillhole-based geological and seismic cross-sections and structural contour maps created from the drillhole data and seismic reflection data, 2.) To test the effectiveness of imaging the faults by selected seismic attributes, and 3.) To compare spectral decomposition amplitude maps with an isochron map and an isopach map of a selected geologic interval (VTG interval). Drillhole and seismic reflection data show that various formation offsets increase near the main Herald-Phillipstown fault, and that the fault and its large offset subsidiary faults penetrate the Precambrian crystalline basement. A broad, northeast-trending 10,000 feet wide graben is consistently observed in the drillhole data. Both shallow and deep formations in the geological cross-sections reveal small horst and graben features within the broad graben created possibly in response to fault reactivations. The HPF faults have been interpreted as originally Precambrian age high-angle, normal faults reactivated with various amounts and types of offset. Evidence for strike-slip movement is also clear on several faults. Changes in the seismic attribute values in the selected interval and along various time slices throughout the whole dataset correlate with the Herald-Phillipstown faults. Overall, seismic attributes could provide a means of mapping large offset faults in areas with limited or absent drillhole data. Results of the spectral decomposition suggest that if the interval velocity is known for a particular formation or interval, high-resolution 3-D seismic reflection surveys could utilize these amplitudes as an alternative seismic interpretation method for estimating formation thicknesses. A VTG isopach map was compared with an isochron map and a spectral decomposition amplitude map. The results reveal that the isochron map strongly correlates with the isopach map as well as the spectral decomposition map. It was also found that thicker areas in the isopach correlated with higher amplitude values in the spectral decomposition amplitude map. Offsets along the faults appear sharper in these amplitudes and isochron maps than in the isopach map, possibly as a result of increased spatial sampling.
149

Resistivity and Seismic Characterization of an Embankment Dam. A Case Study in Northern Sweden / Resistivitet och seismisk karaktärisering av en jordfyllningsdamm. Ett fältarbete i norra Sverige

Polín-Tornero, Álvaro January 2018 (has links)
The main cause of failure in embankment dams - which represent 75% of all dams in the world (ICOLD, 2018) - is the internal erosion produced by excessive seepage not accounted for in their designs. This erosion can cause that a small anomalous structure, not likely to be considered as risky, turns rapidly into a significant structural damage if not recognized on time. This creates a necessity for methods that can detect these anomalies in a non-intrusive, cost-effective and sensitive way. The purpose of this work is to analyse the strength of three geophysical methods (ERT and Seismic Refraction and Reflection) in detecting and accurately localizing anomalous structures inside an embankment dam. This study has been successfully approached in two different ways: by synthetic modelling and by an experimental field work at an embankment dam in northern Sweden. The results show that these methods are capable of detecting different structures in the interior of the dam in an accurate and rapid manner. / Den främsta orsaken till brister i jordfyllningsdammar, som utgör 75% av alla dammar i världen (ICOLD, 2018) och är föremål för detta arbete, är inre erosion som orsakas av extrem läckage som togs inte med i beräkningar i deras konstruktioner. Denna erosion kan resultera i att en liten anomal struktur, som sannolikt inte anses vara riskabel, snabbt blir en betydande strukturell skada om den inte är uppmärksammas i tid. Därför krävs metoder som kan upptäcka dessa anomalier på ett icke-påträngande, kostnadseffektivt och känsligt sätt. Syftet med detta arbete är att analysera möjligheterna med tre geofysiska metoder (ERT, Seismisk Refraktion och Seismisk Reflektion) för att upptäcka och exakt lokalisera anomala strukturer inuti en jordfyllningsdamm. Denna studie har utförts på två fronter: genom (i) syntetisk modellering och (ii) ett experimentellt fältarbete vid en damm i norra Sverige. Resultaten visar att dessa metoder kan detektera olika strukturer inuti dammen på ett pålitligt och snabbt sätt.
150

Ajuste de histórico integrado à caracterização de reservatórios de petróleo e sísmica 4D / Integrated petroleum reservoir characterization and 4D seismic for history matching

Avansi, Guilherme Daniel, 1984- 26 August 2018 (has links)
Orientador: Denis Jose Schiozer / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Instituto de Geociências / Made available in DSpace on 2018-08-26T05:42:36Z (GMT). No. of bitstreams: 1 Avansi_GuilhermeDaniel_D.pdf: 12200632 bytes, checksum: d09b5daf81970a904dbbb737178de400 (MD5) Previous issue date: 2014 / Resumo: A simulação numérica é fundamental para a engenharia de reservatórios, possibilitando a previsão de produção e avaliação de modelos em diferentes estágios da vida produtiva de um campo. Todavia, para isso, é necessário calibrar os modelos com dados de histórico de produção e mapas, sendo indispensável um modelo geológico confiável para gerar modelos numéricos consistentes. O processo de ajuste de histórico tem sido integrado às áreas de estudo de caracterização de reservatórios e sísmica 4D para que melhores resultados possam ser obtidos. Muitas vezes, é difícil testar a aplicabilidade de novas metodologias nessas áreas de trabalho, pois os reservatórios reais são desconhecidos no momento das decisões, e raramente são feitos estudos posteriores para isso. Dessa forma, um dos objetivos principais desta tese é a criação de um modelo sintético (UNISIM-I-R), com características reais e resposta conhecida, a partir de dados públicos do Campo de Namorado, Bacia de Campos, Brasil, de forma que o reservatório real possa ser substituído por um modelo de referência para que metodologias sejam testadas e comparadas durante as fases de pré e pós-desenvolvimento do campo. Para testar as aplicações, outros dois modelos são criados, UNISIM-I-D e UNISIM-I-H, para que metodologias de estratégia de produção e de ajuste de histórico sejam testadas, validadas e comparadas. A aplicação utilizada e apresentada neste trabalho é a de ajuste de histórico, integrada à caracterização geológica e sísmica 4D. Mostra-se o ajuste simultâneo de diferentes funções-objetivo, mantendo a consistência dos modelos gerados, de modo a resultar em previsões de produção confiáveis. Para que modelos geológicos sejam calibrados durante a fase de caracterização integrada ao ajuste, perturba-se o modelo geológico utilizando poços virtuais. Sendo assim, as principais contribuições deste trabalho são a construção de um problema típico da engenharia de reservatórios, com resposta conhecida, e de uma metodologia de ajuste de histórico integrada com a caracterização de reservatórios e sísmica 4D, a qual preserva a consistência geológica dos modelos gerados / Abstract: Numerical simulation is essential for reservoir engineering, allowing the production forecasting and models evaluation in different stages of field production. Besides quantifying reservoir uncertainties in a field planning and developing, it is necessary to adjust models with history production and map data, being indispensable a reliable geological model to get consistent numerical ones. History matching process has been integrated to reservoir characterization and 4D seismic study areas in order to get better results. The applicability of new technologies in these areas is frequently restricted to real reservoir applications, once they are unknown at the time of the decision making, and further studies are rarely made for this. This work aims the creation of a synthetic model, UNISIM-I-R, using a public dataset from Namorado Field, Campos Basin, Brazil, where the real reservoir is replaced with a reference model with known properties, so that methodologies can be tested and compared in a pre and post-development stages of field production. In order to test the applications, two other models are built, UNISIM-I-D and UNISIM-I-H, testing, comparing and validating selection of production strategy and history matching approaches. The proposed and used application is the history matching, reservoir characterization and 4D seismic integrated studies. This way, a simultaneous calibration of different objective-function is proposed, keeping the geological consistency in an adjustment approach for a reliable forecast production. However, it is necessary to perturb the geological model using virtual wells during the reservoir characterization to get the calibration. In conclusion, the main contributions of the presented work are the construction of a typical reservoir engineering problem, with known answer, and the development of an integrated history matching by reservoir characterization and 4D seismic, which preserves the consistency of geological models construction / Doutorado / Reservatórios e Gestão / Doutor em Ciências e Engenharia de Petróleo

Page generated in 0.092 seconds