• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismological data acquisition and signal processing using wavelets

Hloupis, Georgios January 2009 (has links)
This work deals with two main fields: a) The design, built, installation, test, evaluation, deployment and maintenance of Seismological Network of Crete (SNC) of the Laboratory of Geophysics and Seismology (LGS) at Technological Educational Institute (TEI) at Chania. b) The use of Wavelet Transform (WT) in several applications during the operation of the aforementioned network. SNC began its operation in 2003. It is designed and built in order to provide denser network coverage, real time data transmission to CRC, real time telemetry, use of wired ADSL lines and dedicated private satellite links, real time data processing and estimation of source parameters as well as rapid dissemination of results. All the above are implemented using commercial hardware and software which is modified and where is necessary, author designs and deploy additional software modules. Up to now (July 2008) SNC has recorded 5500 identified events (around 970 more than those reported by national bulletin the same period) and its seismic catalogue is complete for magnitudes over 3.2, instead national catalogue which was complete for magnitudes over 3.7 before the operation of SNC. During its operation, several applications at SNC used WT as a signal processing tool. These applications benefited from the adaptation of WT to non-stationary signals such as the seismic signals. These applications are: HVSR method. WT used to reveal undetectable non-stationarities in order to eliminate errors in site’s fundamental frequency estimation. Denoising. Several wavelet denoising schemes compared with the widely used in seismology band-pass filtering in order to prove the superiority of wavelet denoising and to choose the most appropriate scheme for different signal to noise ratios of seismograms. EEWS. WT used for producing magnitude prediction equations and epicentral estimations from the first 5 secs of P wave arrival. As an alternative analysis tool for detection of significant indicators in temporal patterns of seismicity. Multiresolution wavelet analysis of seismicity used to estimate (in a several years time period) the time where the maximum emitted earthquake energy was observed.
2

ANALYSIS AND INTERPRETATION OF 2D/3D SEISMIC DATA OVER DHURNAL OIL FIELD, NORTHERN PAKISTAN

Afsar, Fatima January 2013 (has links)
The study area, Dhurnal oil field, is located 74 km southwest of Islamabad in the Potwar basin of Pakistan. Discovered in March 1984, the field was developed with four producing wells and three water injection wells. Three main limestone reservoirs of Eocene and Paleocene ages are present in this field. These limestone reservoirs are tectonically fractured and all the production is derived from these fractures. The overlying claystone formation of Miocene age provides vertical and lateral seal to the Paleocene and Permian carbonates. The field started production in May 1984, reaching a maximum rate of 19370 BOPD in November 1989. Currently Dhurnal‐1 (D-1) and Dhurnal‐6 (D-6) wells are producing 135 BOPD and 0.65 MMCF/D gas. The field has depleted after producing over 50 million Bbls of oil and 130 BCF of gas from naturally fractured low energy shelf carbonates of the Eocene, Paleocene and Permian reservoirs. Preliminary geological and geophysical data evaluation of Dhurnal field revealed the presence of an up-dip anticlinal structure between D-1 and D-6 wells, seen on new 2003 reprocessed data. However, this structural impression is not observed on old 1987 processed data. The aim of this research is to compare and evaluate old and new reprocessed data in order to identify possible factors affecting the structural configuration. For this purpose, a detailed interpretation of old and new reprocessed data is carried out and results clearly demonstrate that structural compartmentalization exists in Dhurnal field (based on 2003 data). Therefore, to further analyse the available data sets, processing sequences pertaining to both vintages have been examined. After great effort and detailed investigation, it is concluded that the major parameter giving rise to this data discrepancy is the velocity analysis done with different gridding intervals. The detailed and dense velocity analysis carried out on the data in 2003 was able to image the subtle anticlinal feature, which was missed on the 1987 processed seismic data due to sparse gridding. In addition to this, about 105 sq.km 3D seismic data recently (2009) acquired by Ocean Pakistan Limited (OPL) is also interpreted in this project to gain greater confidence on the results. The 3D geophysical interpretation confirmed the findings and aided in accurately mapping the remaining hydrocarbon potential of Dhurnal field.
3

The Northeastern Gulf of Mexico : volcanic or passive margin? : seismic implications of the Gulf of Mexico Basin opening project

Duncan, Mark Hamilton 03 February 2014 (has links)
The Gulf of Mexico Basin Opening project (GUMBO) is a study of the lithological composition and structural evolution of the Gulf of Mexico (GoM) that uses Ocean Bottom Seismometer (OBS) data from four transects in the Northern GoM. I examine 39 OBS shot records in the easternmost transect for shear wave arrivals and pick shear wave travel times from the 11 usable records. I then carry out a tomographic inversion of seismic refraction travel times. I use the resulting shear-wave velocity model in conjunction with a previously constructed P-wave model to examine the relationship between Vp and Vs. I compare velocities in the sediment and basement with empirical velocities from previous studies for the purpose of constraining lithological composition below the transect and make an interpretation of the structural evolution of the eastern GoM. The seismic velocities for crust landward of the Florida Escarpment are consistent with normal continental crust. Seaward of the Escarpment, velocities in the upper oceanic crust are anomalously high (Vp = 6.5 – 7 km/sec; Vs = 4.0 – 4.6 km/sec). A possible explanation for this observation is that GoM basalt formation consisted of basaltic sheet flows, forming oceanic crust that does not contain the vesicularity and lower seismic velocities found in typical pillow basalts. Increased magnesium and iron content could also account for these high velocities. Seismic refraction and reflection data provide a means of investigating the nature of the Moho in the northeastern GoM. I use a finite difference method to generate synthetic record sections for data from eight instruments that are part of the two easternmost GUMBO seismic lines (lines 3 & 4). I then vary the thickness of the Moho in these synthetic models and compare the results with the original receiver gather to examine the effects this variability has on amplitudes. The data from the instruments chosen for these two lines are representative of continental and transitional crust. The finite difference models indicate that the Moho beneath GUMBO 3 is ~1500 m thick based on the onset and amplitudes of PmP arrivals. All five instruments display consistent results. The instruments along GUMBO 4 suggest a Moho almost twice as thick as GUMBO 3 on the landward end of the transect that grades into a Moho of similar thickness (1750 m) in the deep water GoM. The three instruments used to model the Moho in this area show that the Moho ranges from ~1750 to 3500 m in thickness. The sharper boundary beneath continental crust in GUMBO Line 3 supports other evidence that suggests magmatic underplating and volcanism in the northern GoM during the mid-Jurassic. The thicker Moho seen on the landward end of GUMBO Line 4 that is overlain by continental crust was likely unaffected by GoM rifting. Therefore, the Moho beneath the Florida Platform might be as old as the Suwannee Terrane, and complex Moho structure is not uncommon for ancient continental crust. / text
4

Seismic and Well Log Attribute Analysis of the Jurassic Entrada/Curtis Interval Within the North Hill Creek 3D Seismic Survey, Uinta Basin, Utah, A Case History

ONeal, Ryan J. 18 July 2007 (has links) (PDF)
3D seismic attribute analysis of the Jurassic Entrada/Curtis interval within the North Hill Creek (NHC) survey has been useful in delineating reservoir quality eolian-influenced dune complexes. Amplitude, average reflection strength and spectral decomposition appear to be most useful in locating reservoir quality dune complexes, outlining their geometry and possibly displaying lateral changes in thickness. Cross sectional views displaying toplap features likely indicate an unconformity between Entrada clinoforms below and Curtis planar beds above. This relationship may aid the explorationist in discovering this important seismic interval. Seismic and well log attribute values were cross plotted and have revealed associations between these data. Cross plots are accompanied by regression lines and R2 values which support our interpretations. Although reservoir quality dune complexes may be delineated, the Entrada/Curtis play appears to be mainly structural. The best producing wells in the survey are associated with structural or stratigraphic relief and the thickest Entrada/Curtis intervals. Structural and stratigraphic traps are not always associated with laterally extensive dune complexes. Time structure maps as well as isochron maps have proven useful in delineating the thickest and/or gas prone portions of the Entrada/Curtis interval as well as areas with structural and stratigraphic relief. We have observed that the zones of best production are associated with low gamma ray (40-60 API) values. These low values are associated with zones of high amplitude. Thus, max peak amplitude as a seismic attribute may delineate areas of higher sand content (i.e. dune complexes) whereas zones of low amplitude may represent areas of lower sand content (i.e. muddier interdune or tidal flat facies). Lack of significant average porosity does not seem to be related to a lack of production. In fact, the best producing wells have been drilled in Entrada/Curtis intervals where average porosity is near 4 %. There are however zones within the upper portion of the Entrada/Curtis that are 40 ft. (12.2 m) thick and have porosities between 14% and 20%. By combining derived attribute maps with observed cross plot relationships, it appears that the best producing intervals within the Entrada/Curtis are those associated with high amplitudes, API values from 40-60 and structural relief.
5

[en] A SELF-SUPERVISED METHOD FOR BLIND DENOISING OF SEISMIC SHOT GATHERS / [pt] UM MÉTODO AUTOSUPERVISIONADO PARA ATENUAÇÃO CEGA DE RUÍDOS DE SISMOGRAMAS

ANTONIO JOSE GRANDSON BUSSON 24 May 2022 (has links)
[pt] Nos últimos anos, a geofísicos tem se dedicado ao aprimoramento da qualidade dos dados sísmicos por meio da atenuação de ruído e interpolação de sismogramas usando métodos puramente baseados em CNN. Métodos baseados em CNN podem alcançar resultados estado-da-arte para remoção de ruídos. No entanto, eles não se aplicam a cenários sem dados de treinamento emparelhados (ou seja, dados sísmicos ruidosos e dados sísmicos sem ruído correspondentes). Neste trabalho, tratamos a atenuação de ruídos de dados sísmicos como um problema de atenuação de ruído cega, que consiste em remover ruídos desconhecidos sem dados pareados. Em outras palavras, a base usada pelo modelo de denoiser é aprendida a partir das próprias amostras ruidosas durante o treinamento. Motivado por este contexto, o principal objetivo deste trabalho é propor um método autosupervisionado para atenuação cega de dados sísmicos, que não requer análise prévia do sinal sísmico, nenhuma estimativa do ruído e nenhum dado de treinamento pareado. O método proposto assume dois conjuntos de dados: um contendo shot gathers com ruídos e o outro com shot gathers sem ruídos. A partir desses dados, treinamos dois modelos: (1) Seismic Noise Transfer (SNT), que aprende a produzir shot gathers com ruído sintético contendo o ruído dos shot gathers com ruído e o sinal dos shot gathers sem ruído; E (2) Sismic Neural Denoiser (SND), que aprende a mapear os shot gathers com ruído sintético de volta aos shot gathers sem ruído original. Após o treinamento, o SND sozinho é usado para remover o ruído das capturas ruidosas originais. Nosso modelo SNT adapta o algoritmo Neural Style Transfer (NST) ao domínio sísmico. Além disso, nosso modelo SND consiste em uma nova arquitetura CNN baseada em fusão de atributos em várias escalas para eliminação de ruído em shot gathers. Nosso método produziu resultados promissores em experimentos, alcançando um ganho de PSNR de 0,9 em comparação com outros modelos de última geração. / [en] In the last years, the geophysics community has been devoted to seismic data quality enhancement by noise attenuation and seismogram interpolation using CNN-based methods. Discriminative CNN-based methods can achieve state-of-the-art denoising results. However, they do not apply to scenarios without paired training data (i.e., noisy seismic data and corresponding ground-truth noise-free seismic data). In this work, we treat seismic data denoising as a blind denoising problem to remove unknown noise from noisy shot gathers without ground truth training data. The basis used by the denoiser model is learned from the noisy samples themselves during training. Motivated by this context, the main goal of this work is to propose a selfsupervised method for blind denoising of seismic data, which requires no prior seismic signal analysis, no estimate of the noise, and no paired training data. Our proposed self-supervised method assumes two given datasets: one containing noisy shot gathers and the other noise-free shot gathers. From this data, we train two models: (1) Seismic Noise Transfer (SNT), which learns to produce synthetic-noisy shot gathers containing the noise from noisy shot gathers and the signal from noise-free shot gathers; And (2) Seismic Neural Denoiser (SND), which learns to map the syntheticnoisy shot gather back to original noise-free shot gather. After training, SND alone is used to remove the noise from the original noisy shot gathers. Our SNT model adapts the Neural Style Transfer (NST) algorithm to the seismic domain. In addition, our SND model consists of a novel multi-scale feature-fusion-based CNN architecture for seismic shot gather denoising. Our method produced promising results in a holdout experiment, achieving a PSNR gain of 0.9 compared to other state-of-the-art models.
6

Moment sismique et coda d'ondes crustales / Seismic moment and crustal coda-waves

Denieul, Marylin 04 December 2014 (has links)
Une estimation précise de la magnitude est primordiale pour établir des catalogues de sismicité fiables. L’objectif de cette thèse est de développer une méthode d’estimation de la magnitude de moment à partir de la coda des ondes crustales applicable sur les sismogrammes numériques et analogiques. Afin d’étudier les propriétés de la coda en France, nous avons réalisé une analyse fréquentielle et régionale des enveloppes de coda. Nous avons pu estimer le moment sismique M0 et la magnitude de moment Mw pour des sismogrammes numériques, mais pas pour des enregistrements sur papier pour lesquels le filtrage n’est pas possible. Nous avons donc observé les propriétés de la coda dans le domaine temporel. Nous avons déterminé un modèle empirique afin de représenter les enveloppes de coda du signal brut et obtenir une magnitude de coda Mcoda. A partir de la relation linéaire Mcoda/Mw, nous avons déterminé la magnitude de moment directement sur les enregistrements analogiques en France. / Accurate magnitude determination is necessary to establish reliable seismicity catalogs in order to assess seismic hazard. The main goal of this PhD is to develop a method for estimating moment magnitude Mw from coda waves applicable to new digital seismograms as well as to old paper records in France. In order to analyze coda waves properties in France, a study of the regional and frequency properties of coda-wave envelopes has been performed. From this spectral analysis of coda waves, we can estimate seismic moment M0 and moment magnitude Mw from digital seismograms but not from paper records for which no frequency filtering is possible. Therefore, in a second step, we have analyzed the coda-waves properties directly in the time domain. We develop an empirical model which fits the coda envelopes of the raw signal and permits to obtain a coda magnitude Mcoda. From the Mcoda/Mw relationship, we determined the moment magnitude directly from the old paper records in France.
7

都市域の総合的地震被災ポテンシャルの定量化に基づく地域防災カルテの作成

福和, 伸夫, 森, 保宏, 飛田, 潤, 中野, 優, 中井, 正一, 勝倉, 裕, 川端, 寛文, 高堂谷, 正樹 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(B)(2) 課題番号:11555149 研究代表者:都市域の総合的地震被災ポテンシャルの定量化に基づく地域防災カルテの作成 研究期間:1999-2001年度

Page generated in 0.0473 seconds