Spelling suggestions: "subject:"seleção dde conteúdo"" "subject:"seleção dee conteúdo""
1 |
Uma arquitetura de personalização de conteúdo baseada em anotações do usuário / An architecture for content personalization based on peer-level annotationsManzato, Marcelo Garcia 14 February 2011 (has links)
A extração de metadados semânticos de vídeos digitais para uso em serviços de personalização é importante, já que o conteúdo é adaptado segundo as preferências de cada usuário. Entretanto, apesar de serem encontradas várias propostas na literatura, as técnicas de indexação automática são capazes de gerar informações semânticas apenas quando o domínio do conteúdo é restrito. Alternativamente, existem técnicas para a criação manual dessas informações por profissionais, contudo, são dispendiosas e suscetíveis a erros. Uma possível solução seria explorar anotações colaborativas dos usuários, mas tal estratégia provoca a perda de individualidade dos dados, impedindo a extração de preferências do indivíduo a partir da interação. Este trabalho tem como objetivo propor uma arquitetura de personalização que permite a indexação multimídia de modo irrestrito e barato, utilizando anotações colaborativas, mas mantendo-se a individualidade dos dados para complementar o perfil de interesses do usuário com conceitos relevantes. A multimodalidade de metadados e de preferências também é explorada na presente tese, fornecendo maior robustez na extração dessas informações, e obtendo-se uma maior carga semântica que traz benefícios às aplicações. Como prova de conceito, este trabalho apresenta dois serviços de personalização que exploram a arquitetura proposta, avaliando os resultados por meio de comparações com abordagens previamente propostas na literatura / The extraction of semantic information from digital video is important to be used on personalization services because the content is adapted according to each users preferences. However, although it is possible to find several approaches in the literature, automatic indexing techniques are able to generate semantic metadata only when the contents domain is restricted. Alternatively, this information can be created manually by professionals, but this activity is time-consuming and error-prone. A possible solution would be to explore collaborative users annotations, but such approach has the disadvantage of lacking the individuality of annotations, hampering the extraction of users preferences from the interaction. This work has the objective of proposing a generic personalization architecture that allows multimedia indexing procedures to be accomplished in a cheap and unrestricted way. Such architecture uses collaborative annotations, but keeps the individuality of the data in order to augment the users profile with relevant concepts. The multimodality of metadata and users preferences is also explored in this work, which provides robustness during the extraction of semantic information, bringing benefits to applications. This work also presents two personalization services that explore the proposed architecture, along with evaluations that compare the obtained results with previously proposed approaches
|
2 |
Uma arquitetura de personalização de conteúdo baseada em anotações do usuário / An architecture for content personalization based on peer-level annotationsMarcelo Garcia Manzato 14 February 2011 (has links)
A extração de metadados semânticos de vídeos digitais para uso em serviços de personalização é importante, já que o conteúdo é adaptado segundo as preferências de cada usuário. Entretanto, apesar de serem encontradas várias propostas na literatura, as técnicas de indexação automática são capazes de gerar informações semânticas apenas quando o domínio do conteúdo é restrito. Alternativamente, existem técnicas para a criação manual dessas informações por profissionais, contudo, são dispendiosas e suscetíveis a erros. Uma possível solução seria explorar anotações colaborativas dos usuários, mas tal estratégia provoca a perda de individualidade dos dados, impedindo a extração de preferências do indivíduo a partir da interação. Este trabalho tem como objetivo propor uma arquitetura de personalização que permite a indexação multimídia de modo irrestrito e barato, utilizando anotações colaborativas, mas mantendo-se a individualidade dos dados para complementar o perfil de interesses do usuário com conceitos relevantes. A multimodalidade de metadados e de preferências também é explorada na presente tese, fornecendo maior robustez na extração dessas informações, e obtendo-se uma maior carga semântica que traz benefícios às aplicações. Como prova de conceito, este trabalho apresenta dois serviços de personalização que exploram a arquitetura proposta, avaliando os resultados por meio de comparações com abordagens previamente propostas na literatura / The extraction of semantic information from digital video is important to be used on personalization services because the content is adapted according to each users preferences. However, although it is possible to find several approaches in the literature, automatic indexing techniques are able to generate semantic metadata only when the contents domain is restricted. Alternatively, this information can be created manually by professionals, but this activity is time-consuming and error-prone. A possible solution would be to explore collaborative users annotations, but such approach has the disadvantage of lacking the individuality of annotations, hampering the extraction of users preferences from the interaction. This work has the objective of proposing a generic personalization architecture that allows multimedia indexing procedures to be accomplished in a cheap and unrestricted way. Such architecture uses collaborative annotations, but keeps the individuality of the data in order to augment the users profile with relevant concepts. The multimodality of metadata and users preferences is also explored in this work, which provides robustness during the extraction of semantic information, bringing benefits to applications. This work also presents two personalization services that explore the proposed architecture, along with evaluations that compare the obtained results with previously proposed approaches
|
3 |
Investigação de estratégias de sumarização humana multidocumentoCamargo, Renata Tironi de 30 August 2013 (has links)
Made available in DSpace on 2016-06-02T20:25:21Z (GMT). No. of bitstreams: 1
5583.pdf: 2165924 bytes, checksum: 9508776d3397fc5a516393218f88c50f (MD5)
Previous issue date: 2013-08-30 / Universidade Federal de Minas Gerais / The multi-document human summarization (MHS), which is the production of a manual summary from a collection of texts from different sources on the same subject, is a little explored linguistic task. Considering the fact that single document summaries comprise information that present recurrent features which are able to reveal summarization strategies, we aimed to investigate multi-document summaries in order to identify MHS strategies. For the identification of MHS strategies, the source texts sentences from the CSTNews corpus (CARDOSO et al., 2011) were manually aligned to their human summaries. The corpus has 50 clusters of news texts and their multi-document summaries in Portuguese. Thus, the alignment revealed the origin of the selected information to compose the summaries. In order to identify whether the selected information show recurrent features, the aligned (and nonaligned) sentences were semi automatically characterized considering a set of linguistic attributes identified in some related works. These attributes translate the content selection strategies from the single document summarization and the clues about MHS. Through the manual analysis of the characterizations of the aligned and non-aligned sentences, we identified that the selected sentences commonly have certain attributes such as sentence location in the text and redundancy. This observation was confirmed by a set of formal rules learned by a Machine Learning (ML) algorithm from the same characterizations. Thus, these rules translate MHS strategies. When the rules were learned and tested in CSTNews by ML, the precision rate was 71.25%. To assess the relevance of the rules, we performed 3 different kinds of intrinsic evaluations: (i) verification of the occurrence of the same strategies in another corpus, and (ii) comparison of the quality of summaries produced by the HMS strategies with the quality of summaries produced by different strategies. Regarding the evaluation (i), which was automatically performed by ML, the rules learned from the CSTNews were tested in a different newspaper corpus and its precision was 70%, which is very close to the precision obtained in the training corpus (CSTNews). Concerning the evaluating (ii), the quality, which was manually evaluated by 10 computational linguists, was considered better than the quality of other summaries. Besides describing features concerning multi-document summaries, this work has the potential to support the multi-document automatic summarization, which may help it to become more linguistically motivated. This task consists of automatically generating multi-document summaries and, therefore, it has been based on the adjustment of strategies identified in single document summarization or only on not confirmed clues about MHS. Based on this work, the automatic process of content selection in multi-document summarization methods may be performed based on strategies systematically identified in MHS. / A sumarização humana multidocumento (SHM), que consiste na produção manual de um sumário a partir de uma coleção de textos, provenientes de fontes-distintas, que abordam um mesmo assunto, é uma tarefa linguística até então pouco explorada. Tomando-se como motivação o fato de que sumários monodocumento são compostos por informações que apresentam características recorrentes, a ponto de revelar estratégias de sumarização, objetivou-se investigar sumários multidocumento com o objetivo de identificar estratégias de SHM. Para a identificação das estratégias de SHM, os textos-fonte (isto é, notícias) das 50 coleções do corpus multidocumento em português CSTNews (CARDOSO et al., 2011) foram manualmente alinhados em nível sentencial aos seus respectivos sumários humanos, relevando, assim, a origem das informações selecionadas para compor os sumários. Com o intuito de identificar se as informações selecionadas para compor os sumários apresentam características recorrentes, as sentenças alinhadas (e não-alinhadas) foram caracterizadas de forma semiautomática em função de um conjunto de atributos linguísticos identificados na literatura. Esses atributos traduzem as estratégias de seleção de conteúdo da sumarização monodocumento e os indícios sobre a SHM. Por meio da análise manual das caracterizações das sentenças alinhadas e não-alinhadas, identificou-se que as sentenças selecionadas para compor os sumários multidocumento comumente apresentam certos atributos, como localização das sentenças no texto e redundância. Essa constatação foi confirmada pelo conjunto de regras formais aprendidas por um algoritmo de Aprendizado de Máquina (AM) a partir das mesmas caracterizações. Tais regras traduzem, assim, estratégias de SHM. Quando aprendidas e testadas no CSTNews pelo AM, as regras obtiveram precisão de 71,25%. Para avaliar a pertinência das regras, 2 avaliações intrínsecas foram realizadas, a saber: (i) verificação da ocorrência das estratégias em outro corpus, e (ii) comparação da qualidade de sumários produzidos pelas estratégias de SHM com a qualidade de sumários produzidos por estratégias diferentes. Na avaliação (i), realizada automaticamente por AM, as regras aprendidas a partir do CSTNews foram testadas em um corpus jornalístico distinto e obtiveram a precisão de 70%, muito próxima da obtida no corpus de treinamento (CSTNews). Na avaliação (ii), a qualidade, avaliada de forma manual por 10 linguistas computacionais, foi considerada superior à qualidade dos demais sumários de comparação. Além de descrever características relativas aos sumários multidocumento, este trabalho, uma vez que gera regras formais (ou seja, explícitas e não-ambíguas), tem potencial de subsidiar a Sumarização Automática Multidocumento (SAM), tornando-a mais linguisticamente motivada. A SAM consiste em gerar sumários multidocumento de forma automática e, para tanto, baseava-se na adaptação das estratégias identificadas na sumarização monodocumento ou apenas em indícios, não comprovados sistematicamente, sobre a SHM. Com base neste trabalho, a seleção de conteúdo em métodos de SAM poderá ser feita com base em estratégias identificadas de forma sistemática na SHM.
|
4 |
Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngueTosta, Fabricio Elder da Silva 27 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:25:23Z (GMT). No. of bitstreams: 1
6554.pdf: 2657931 bytes, checksum: 11403ad2acdeafd11148154c92757f20 (MD5)
Previous issue date: 2014-02-27 / Financiadora de Estudos e Projetos / Traditionally, Multilingual Multi-document Automatic Summarization (MMAS) is a computational application that, from a single collection of source-texts on the same subject/topic in at least two languages, produces an informative and generic summary (extract) in one of these languages. The simplest methods automatically translate the source-texts and, from a monolingual collection, apply content selection strategies based on shallow and/or deep linguistic knowledge. Therefore, the MMAS applications need to identify the main information of the collection, avoiding the redundancy, but also treating the problems caused by the machine translation (MT) of the full source-texts. Looking for alternatives to the traditional scenario of MMAS, we investigated two methods (Method 1 and 2) that once based on deep linguistic knowledge of lexical-conceptual level avoid the full MT of the sourcetexts, generating informative and cohesive/coherent summaries. In these methods, the content selection starts with the score and the ranking of the original sentences based on the frequency of occurrence of the concepts in the collection, expressed by their common names. In Method 1, only the most well-scored and non redundant sentences from the user s language are selected to compose the extract, until it reaches the compression rate. In Method 2, the original sentences which are better ranked and non redundant are selected to the summary without privileging the user s language; in cases which sentences that are not in the user s language are selected, they are automatically translated. In order to producing automatic summaries according to Methods 1 and 2 and their subsequent evaluation, the CM2News corpus was built. The corpus has 20 collections of news texts, 1 original text in English and 1 original text in Portuguese, both on the same topic. The common names of CM2News were identified through morphosyntactic annotation and then it was semiautomatically annotated with the concepts in Princeton WordNet through the Mulsen graphic editor, which was especially developed for the task. For the production of extracts according to Method 1, only the best ranked sentences in Portuguese were selected until the compression rate was reached. For the production of extracts according to Method 2, the best ranked sentences were selected, without privileging the language of the user. If English sentences were selected, they were automatically translated into Portuguese by the Bing translator. The Methods 1 and 2 were evaluated intrinsically considering the linguistic quality and informativeness of the summaries. To evaluate linguistic quality, 15 computational linguists analyzed manually the grammaticality, non-redundancy, referential clarity, focus and structure / coherence of the summaries and to evaluate the informativeness of the sumaries, they were automatically compared to reference sumaries by ROUGE measures. In both evaluations, the results have shown the better performance of Method 1, which might be explained by the fact that sentences were selected from a single source text. Furthermore, we highlight the best performance of both methods based on lexicalconceptual knowledge compared to simpler methods of MMAS, which adopted the full MT of the source-texts. Finally, it is noted that, besides the promising results on the application of lexical-conceptual knowledge, this work has generated important resources and tools for MMAS, such as the CM2News corpus and the Mulsen editor. / Tradicionalmente, a Sumarização Automática Multidocumento Multilíngue (SAMM) é uma aplicação que, a partir de uma coleção de textos sobre um mesmo assunto em ao menos duas línguas distintas, produz um sumário (extrato) informativo e genérico em uma das línguas-fonte. Os métodos mais simples realizam a tradução automática (TA) dos textos-fonte e, a partir de uma coleção monolíngue, aplicam estratégias superficiais e/ou profundas de seleção de conteúdo. Dessa forma, a SAMM precisa não só identificar a informação principal da coleção para compor o sumário, evitando-se a redundância, mas também lidar com os problemas causados pela TA integral dos textos-fonte. Buscando alternativas para esse cenário, investigaram-se dois métodos (Método 1 e 2) que, uma vez pautados em conhecimento profundo do tipo léxico-conceitual, evitam a TA integral dos textos-fonte, gerando sumários informativos e coesos/coerentes. Neles, a seleção do conteúdo tem início com a pontuação e o ranqueamento das sentenças originais em função da frequência de ocorrência na coleção dos conceitos expressos por seus nomes comuns. No Método 1, apenas as sentenças mais bem pontuadas na língua do usuário e não redundantes entre si são selecionadas para compor o sumário até que se atinja a taxa de compressão. No Método 2, as sentenças originais mais bem ranqueadas e não redundantes entre si são selecionadas para compor o sumário sem que se privilegie a língua do usuário; caso sentenças que não estejam na língua do usuário sejam selecionadas, estas são automaticamente traduzidas. Para a produção dos sumários automáticos segundo os Métodos 1 e 2 e subsequente avaliação dos mesmos, construiu-se o corpus CM2News, que possui 20 coleções de notícias jornalísticas, cada uma delas composta por 1 texto original em inglês e 1 texto original em português sobre um mesmo assunto. Os nomes comuns do CM2News foram identificados via anotação morfossintática e anotados com os conceitos da WordNet de Princeton de forma semiautomática, ou seja, por meio do editor gráfico MulSen desenvolvido para a tarefa. Para a produção dos sumários segundo o Método 1, somente as sentenças em português mais bem pontuadas foram selecionadas até que se atingisse determinada taxa de compressão. Para a produção dos sumários segundo o Método 2, as sentenças mais pontuadas foram selecionadas sem privilegiar a língua do usuário. Caso as sentenças selecionadas estivessem em inglês, estas foram automaticamente traduzidas para o português pelo tradutor Bing. Os Métodos 1 e 2 foram avaliados de forma intrínseca, considerando-se a qualidade linguística e a informatividade dos sumários. Para avaliar a qualidade linguística, 15 linguistas computacionais analisaram manualmente a gramaticalidade, a não-redundância, a clareza referencial, o foco e a estrutura/coerência dos sumários e, para avaliar a informatividade, os sumários foram automaticamente comparados a sumários de referência pelo pacote de medidas ROUGE. Em ambas as avaliações, os resultados evidenciam o melhor desempenho do Método 1, o que pode ser justificado pelo fato de que as sentenças selecionadas são provenientes de um mesmo texto-fonte. Além disso, ressalta-se o melhor desempenho dos dois métodos baseados em conhecimento léxico-conceitual frente aos métodos mais simples de SAMM, os quais realizam a TA integral dos textos-fonte. Por fim, salienta-se que, além dos resultados promissores sobre a aplicação de conhecimento léxico-conceitual, este trabalho gerou recursos e ferramentas importantes para a SAMM, como o corpus CM2News e o editor MulSen.
|
5 |
Investigação de estratégias de seleção de conteúdo baseadas na UNL (Universal Networking Language)Chaud, Matheus Rigobelo 03 March 2015 (has links)
Made available in DSpace on 2016-06-02T20:25:24Z (GMT). No. of bitstreams: 1
6636.pdf: 3131517 bytes, checksum: 2afb763348af4eeb377c36a05732707f (MD5)
Previous issue date: 2015-03-03 / Financiadora de Estudos e Projetos / The field of Natural Language Processing (NLP) has witnessed increased attention to Multilingual Multidocument Summarization (MMS), whose goal is to process a cluster of source documents in more than one language and generate a summary of this collection in one of the target languages. In MMS, the selection of sentences from source texts for summary generation may be based on either shallow or deep linguistic features. The purpose of this research was to investigate whether the use of deep knowledge, obtained from a conceptual representation of the source texts, could be useful for content selection in texts within the newspaper genre. In this study, we used a formal representation system the UNL (Universal Networking Language). In order to investigate content selection strategies based on this interlingua, 3 clusters of texts were represented in UNL, each consisting of 1 text in Portuguese, 1 text in English and 1 human-written reference summary. Additionally, in each cluster, the sentences of the source texts were aligned to the sentences of their respective human summaries, in order to identify total or partial content overlap between these sentences. The data collected allowed a comparison between content selection strategies based on conceptual information and a traditional selection method based on a superficial feature - the position of the sentence in the source text. According to the results, content selection based on sentence position was more closely correlated with the selection made by the human summarizer, compared to the conceptual methods investigated. Furthermore, the sentences in the beginning of the source texts, which, in newspaper articles, usually convey the most relevant information, did not necessarily contain the most frequent concepts in the text collection; on several occasions, the sentences with the most frequent concepts were in the middle or at the end of the text. These results indicate that, at least in the clusters analyzed, other criteria besides concept frequency help determine the relevance of a sentence. In other words, content selection in human multidocument summarization may not be limited to the selection of the sentences with the most frequent concepts. In fact, it seems to be a much more complex process. / Na área de Processamento Automático das Línguas Naturais (PLN), há um destaque crescente para a Sumarização Automática Multidocumento Multilíngue (SAMM), cujo objetivo é processar uma coleção de documentos-fonte em mais de uma língua e gerar um sumário correspondente a essa coleção em uma das línguas-alvo. Na SAMM, a seleção das sentenças dos textos-fonte para composição do sumário pode ser feita com base em atributos linguísticos superficiais ou profundos. O objetivo deste projeto foi investigar se a utilização de conhecimento profundo, obtido a partir de uma representação conceitual dos textos-fonte, pode ser útil na seleção de conteúdo em textos do gênero jornalístico. Para isso, utilizou-se um sistema de representação formal a UNL (Universal Networking Language). Visando investigar estratégias de seleção de conteúdo baseadas nessa interlíngua, fez-se a representação em UNL de 3 coleções de textos, cada qual com 1 texto-fonte em português, 1 texto-fonte em inglês e 1 sumário humano de referência. Fez-se também o alinhamento das sentenças dos textos-fonte de cada coleção às sentenças de seus respectivos sumários humanos, objetivando identificar sobreposição total ou parcial de conteúdo entre essas sentenças. Esses dados permitiram a comparação entre estratégias de seleção de conteúdo baseadas em informações conceituais e um método de seleção tradicional baseado em um atributo superficial a posição da sentença no texto-fonte. De acordo com os resultados obtidos, a seleção de conteúdo com base na posição no texto-fonte correlacionou-se mais adequadamente com a seleção realizada pelo sumarizador humano, comparado aos métodos conceituais investigados. Além disso, as sentenças iniciais dos textos-fonte, que, em textos jornalísticos, normalmente veiculam as informações mais relevantes, não necessariamente continham os conceitos mais frequentes da coleção; em diversas ocasiões, as sentenças com os conceitos mais frequentes estavam em posição intermediária ou final no texto. Esses resultados indicam que, ao menos nas coleções analisadas, outros critérios, além da frequência de conceitos, concorrem para determinar a relevância de uma sentença. Em outras palavras, na sumarização humana multidocumento, a seleção de conteúdo provavelmente não se resume a selecionar sentenças com os conceitos mais frequentes, tratando-se de um processo bem mais complexo.
|
Page generated in 0.0546 seconds