• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Water as a driver of evolution : the example of aquatic snakes / L’eau, un moteur de l’évolution : exemple des serpents aquatiques

Segall, Marion 10 November 2017 (has links)
L’environnement dans lequel les espèces animales vivent joue un rôle important dans leur évolution. Les contraintes physiques sont particulièrement intéressantes car elles induisent souvent une pression évolutive qui pousse les espèces, même éloignées, à développer des réponses adaptatives similaires. Les contraintes physiques liées à la vie en milieu aquatique ont un impact important sur les trajectoires évolutives des espèces et notamment sur leur comportement et leur morphologie. De nombreux cas de convergences ont été démontrés, comme l’évolution d’une forme profilée chez les poissons, les mammifères marins et certains oiseaux aquatiques. Ces contraintes, appelées contraintes hydrodynamiques, sont particulièrement présentes lors de la réalisation d’un mouvement. On peut caractériser deux contraintes principales : la trainée et la masse ajoutée. La trainée est la résistance que le fluide oppose au mouvement de l’animal. La masse ajoutée elle, est la masse d’eau déplacée lorsque le corps se met en mouvement donc lors d’une accélération. Ces contraintes sont particulièrement présentes lors de la capture d’une proie dans l’eau. Ainsi, beaucoup d’animaux aquatiques ont développé un système de succion qui leur permet d’aspirer leur proie afin de limiter ces contraintes. Cependant, certains animaux, comme les serpents, ne peuvent pas développer ce type d’adaptation. Pourtant, plus de 200 espèces de serpents attrapent des proies dans l’eau. A travers ce travail, nous nous intéressons aux stratégies adaptatives développées par les serpents aquatiques afin de devenir de performants prédateurs. Deux hypothèses sont explorées : l’adaptation morphologique de la tête des serpents ainsi qu’une adaptation comportementale qui permettraient de réduire les contraintes hydrodynamiques. Des analyses morphologique et comportementale sont réalisées sur plusieurs espèces de serpents aquatiques afin de tester ces hypothèses. Les contraintes associées aux différentes formes de tête et comportements mis en évidence sont caractérisées à l’aide d’expériences d’hydrodynamique. L’interdisciplinarité qui est le cœur de ce manuscrit permet d’apporter un regard nouveau sur ces questions qui intriguent tant les biologistes que les physiciens. / Animal-environment interactions are determinant in driving the evolution of phenotypic variation. Most aquatic animals have developed adaptations to overcome the physical constraints inherent to an aquatic lifestyle and particularly to motion in water. These constraints are the drag and the added mass if an acceleration is involved in the motion, such as during prey capture. The aim of this project is to evaluate the role of water as a potential driver of evolution of aquatic snakes by focusing on morphological and behavioral convergences during underwater prey capture. Snakes are a good model as an aquatic life-style has originated independently in different genera. However, aquatic snakes did not develop a suction feeding system in contrast to most aquatic vertebrates. Prey-capture under water is constrained by the physical properties of the fluid and thus morphological and/or behavioral convergence is expected. By comparing the head shapes and the behavior of different species, we evaluated the impact of water on the evolution of head shape and strike behavior. By using experimental fluid mechanics approaches, we quantified the physical constraints involved in prey capture and evaluated the nature of the evolutionary response in response to these hydrodynamic constraints. This interdisciplinary approach allowed us to bring novel data to our understanding of functional constraints as drivers of phenotypic evolution.
12

Étude de l’évolution du tropisme et de la pression sélective exercée sur le gène de l’enveloppe du virus de l’immunodéficience humaine de type 1 au cours de la grossesse et à l’échelle de la population

Ransy, Doris 02 1900 (has links)
No description available.
13

Bayesian codon models for detecting convergent molecular adaptation

Parto, Sahar 11 1900 (has links)
No description available.
14

Metody detekce selekce v DNA sekvencích / Methods to detect selection in DNA sequences

Procházka, Ondřej January 2016 (has links)
The topic of semestral thesis is methods to detect selection in DNA sequences. In the begining of the thesis we will describe molecular evolution. It will be written what made the evolution and how the evolution is shown. Moreover there are gen mutations and mechanisms of diffuse and fixation. It will be defined what pozitive, negative and neutral selection is. The thesis is focused on evolution distance of synonymous and nonsynonymous substitution. There will be described three methods – Nei-Gojobori, Li-Wu-Luo and Comeron. All these methods will be described with mathematic formulas. There will be statistic test to decide what kind of selection ti is – there will be used z-test. In the practical part, there will be information about developed software what counts selection pressure from sequences from databazes in format GenBank and it shows parts where selection is. The software will be used for two data sets with two different genetic codes. The result will be discussed. We will discuss results of all three methods of selection pressure and influence of input parametrs.

Page generated in 0.0756 seconds