• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 9
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 111
  • 111
  • 111
  • 30
  • 28
  • 21
  • 16
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Initiation of blood coagulation - Evaluating the relevance of specific surface functionalities using self assembled monolayers

Fischer, Marion 24 June 2010 (has links)
The surface of biomaterials can induce contacting blood to coagulate, similar to the response initiated by injured blood vessels to control blood loss. This poses a challenge to the use of biomaterials as the resulting coagulation can impair the performance of hemocompatible devices such as catheters, vascular stents and various extracorporeal tubings [1], what can moreover cause severe host reactions like embolism and infarction. Biomaterial induced coagulation processes limit the therapeutic use of medical products, what motivates the need for a better understanding of the basic mechanisms leading to this bio-incompatibility [2] in order to define modification strategies towards improved biomaterials [3]. Several approaches for the enhancement of hemocompatible surfaces include passive and active strategies for surface modifications. The materials’ chemical-physical properties like surface chemistry, wettability and polarity are parameters of passive modification approaches for improved hemocompatibility and are the focus of the present work. In the present study self assembled monolayers with different surface functionalities (-COOH, -OH, -CH3) were applied as well as two-component-layers with varying fractions of these, as they allow a defined graduation of surface wettability and charge. The ease of control over these parameters given by these model surfaces enables the evaluation of the influence of specific surface-properties on biological responses. To evaluate the effects of different surface chemistry on initial mechanisms of biomaterial induced coagulation, the surfaces were incubated with protein solution, human plasma, blood cell fractions or fresh heparinised human whole blood. Indicative hemocompatibility parameters were subsequently analysed focusing on protein adsorption, coagulation activation, contact activation (intrinsic/ enhancer pathway), impact of tissue factor (extrinsic/ activator pathway) and cellular systems (blood platelets and leukocytes).
82

Controlling Gold Nanoparticle Assembly through Particle-Particle and Particle-Surface Interactions

Kelley, John Joseph 28 August 2018 (has links)
No description available.
83

BIOCOMPOSITE PROTON EXCHANGE MEMBRANES*

Stephens, Brian Dominic 21 July 2006 (has links)
No description available.
84

Preparation of Heparin Surface for Quantification of Fibroblast Growth Factor-2 (FGF-2) Binding Using Surface Plasmon Resonance (SPR)

Kirtland, David Rand 17 June 2005 (has links)
A mixed self assembling monolayer (mSAM) chip with attached heparin was developed to analyze heparin-protein interactions using a Reichert Inc, SR7000, surface plasmon resonance (SPR) instrument. The heparin was attached via streptavidin-biotin linkage where the streptavidin was covalently coupled to the mSAM and biotinylated heparin bound to it. These chips were then used to quantify the interactions of fibroblast growth factor-2 (FGF-2) with the surface bound heparin. Kinetic rate constants of association and disassociation were calculated. The association data of FGF-2 with heparin was fit to a single compartment, well-mixed model as the data did not exhibit mass transfer limitations. The results suggested that rebinding was prevalent and observed disassociation rates differed significantly in the presence of competing soluble heparin during disassociation. Our results indicate that the Reichert instrument and mSAM chips can be used to analyze heparin-protein interactions but that a careful protocol, outlined in this thesis, should be followed to obtain optimal data. / Master of Science
85

Chemical scanning probe lithography and molecular construction

Hanyu, Yuki January 2010 (has links)
The initiation and high resolution control of surface confined chemical reactions would be both beneficial for nanofabrication and fundamentally interesting. In this work, spatially controlled scanning probe directed organometallic coupling, patterned functional protein immobilisation and highly localised reversible redox reactions on SAMs were investigated. Catalytically active palladium nanoparticles were mounted on a scanning probe and an appropriate reagent SAM was scanned in a reagent solution. This instigated a spatially resolved organometallic coupling reaction between the solution and SAM-phase reagents. Within this catalytic nanolithography a spatial resolution of ~10nm is possible, equating to zeptomole-scale reaction. The methodology was applied to reactions such as Sonogashira coupling and local oligo(phenylene vinylene) synthesis. By altering the experimental protocols, relating probe scan velocity to reaction yield and characterising the nanopattern, a PVP matrix model describing a proposed mechanism of catalytic nanolithography, was presented. Though ultimately limited by probe deactivation, calculations indicated that activity per immobilised nanoparticle is very high in this configuration. For biopatterning, surface nanopatterns defined by carboxylic functionality were generated from methyl-terminated SAMs by local anodic oxidation (LAO) initiated by a conductive AFM probe. By employing suitable linker compounds, avidin and Stefin-A quadruple Mutant (SQM) receptive peptide aptamers were patterned at sub-100nm resolution. The multiplexed sensing capability of an SQM array was demonstrated by reacting generated patterns with single or a mixture of multiple antibodies. The reversible redox conversion and switching of reactivity of hydroquinone-terminated SAMs was electrochemically demonstrated prior to an application in redox nanolithography. In this methodology, spatially controlled probe-induced in situ "writing" and "erasing" based on reversible redox conversion were conducted on hydroquinone terminated SAM. In combination with dip-pen nanolithography, a novel method of redox electro-pen nanolithography was designed and the method’s application for lithography was examined.
86

Towards the nanomechanical actuation and controlled assembly of nanomaterials using charge-transfer reactions in electroactive self-assembled monolayers

Norman, Lana 07 1900 (has links)
Les microcantileviers fonctionnalisés offrent une plateforme idéale pour la nano- et micro-mécanique et pour le développement de (bio-) capteurs tres sensible. Le principe d’opération consiste dans des évènements physicochimiques qui se passent du côté fonctionnalisé du microcantilevier induisant une différence de stress de surface entre les deux côtés du cantilevier qui cause une déflexion verticale du levier. Par contre, les facteurs et les phénomènes interfacials qui régissent la nature et l'intensité du stress de surface sont encore méconnus. Pour éclaircir ce phénomène, la première partie de cette thèse porte sur l'étude des réactions de microcantileviers qui sont recouverts d'or et fonctionnalisés par une monocouche auto-assemblée (MAA) électroactive. La formation d'une MAA de ferrocènylundécanethiol (FcC11SH) à la surface d'or d'un microcantilevier est le modèle utilisé pour mieux comprendre le stress de surface induit par l’électrochimie. Les résultats obtenus démontrent qu'une transformation rédox de la MAA de FcC11SH crée un stress de surface qui résulte dans une déflexion verticale du microcantilevier. Dépendamment de la flexibilité du microcantilevier, cette déflexion peut varier de quelques nanomètres à quelques micromètres. L’oxydation de cette MAA de FcC11SH dans un environnement d'ions perchlorate génère un changement de stress de surface compressive. Les résultats indiquent que la déflexion du microcantilevier est due à une tension latérale provenant d'une réorientation et d'une expansion moléculaire lors du transfért de charge et de pairage d’anions. Pour vérifier cette hypothèse, les mêmes expériences ont été répéteés avec des microcantileviers qui ont été couverts d'une MAA mixte, où les groupements électroactifs de ferrocène sont isolés par des alkylthiols inactifs. Lorsqu’un potentiel est appliqué, un courant est détecté mais le microcantilevier ne signale aucune déflexion. Ces résultats confirment que la déflexion du microcantilevier est due à une pression latérale provenant du ferrocènium qui se réorganise et qui crée une pression sur ses pairs avoisinants plutôt que du couplage d’anions. L’amplitude de la déflexion verticale du microcantilevier dépend de la structure moléculaire de la MAA et du le type d’anion utilisés lors de la réaction électrochimique. Dans la prochaine partie de la thèse, l’électrochimie et la spectroscopie de résonance de plasmon en surface ont été combinées pour arriver à une description de l’adsorption et de l’agrégation des n-alkyl sulfates à l’interface FcC11SAu/électrolyte. À toutes les concentrations de solution, les molécules d'agent tensio-actif sont empilées perpendiculairement à la surface d'électrode sous forme de monocouche condensé entrecroisé. Cependant, la densité du film spécifiquement adsorbé s'est avérée être affectée par l'état d'organisation des agents tensio-actifs en solution. À faible concentration, où les molécules d'agent tensio-actif sont présentes en tant que monomères solvatés, les monomères peuvent facilement s'adapter à l’évolution de la concentration en surface du ferrocènium lors du balayage du potential. Cependant, lorsque les molécules sont présentes en solution en tant que micelles une densité plus faible d'agent tensio-actif a été trouvée en raison de l'incapacité de répondre effectivement à la surface de ferrocenium générée dynamiquement. / Surface-functionalized microcantilevers provide an ideal platform for nano- and micro-mechanical actuation and highly sensitive sensing technologies. The basic principle of operation is that a chemical or physical event occurring at the functionalized surface of one side of the cantilever generates a surface stress difference (between the active functionalized and passive non-functionalized sides) that causes the cantilever to bend away from its resting position. However, the factors and phenomena contributing to both the nature and magnitude of the surface stress are not well understood. To this end, the first part of this thesis focused on investigating the potential-controlled actuation and surface stress properties of free-standing gold-coated microcantilevers functionalized with a redox-active self-assembled monolayer (SAM). A ferrocenylundecanethiolate (FcC11SAu) SAM on a gold-coated cantilever was used as a model system to investigate the surface stress generated by faradaic chemistry. The data obtained clearly demonstrates that the electrochemical transformation of a ferrocene moiety in a monomolecular organic film can generate a surface stress change of sufficient magnitude to deflect a microcantilever. In fact, depending on the flexibility of the microcantilever, the mechanical deflection resulting from the redox transformation of the surface-tethered ferrocene can range on the order of nanometers to micrometers. The oxidation of the FcC11SAu SAM in perchlorate electrolyte generates a compressive surface stress change. The microcantilever deflection is driven by the lateral tension resulting from molecular reorientation/volume expansion accompanying the charge-transfer and ion-pairing events. To verify this hypothesis, mixed SAM-modified microcantilevers, in which the electroactive ferrocenes are isolated from one another by an inert n-alkylthiolate matrix, were investigated. Under an applied potential, a Faradaic current was measured, but no microcantilever beam deflection was observed. This finding confirms that the cantilever responds to the lateral pressure exerted by an ensemble of re-orienting ferrocenium-bearing alkylthiolates upon each other rather than to individual anion pairing events. Changes in molecular structure and anion type can also be used to modulate the extent of micromechanical motion. In the next part of the dissertation, electrochemical measurements and surface plasmon resonance spectroscopy were combined to present a description of the adsorption and aggregation of n-alkyl sulfates at the FcC11SAu/electrolyte interface. At all bulk solution concentrations, the surfactant moieties packed perpendicular to the electrode surface in the form of an interdigitated condensed film. However, the density of the specifically adsorbed film was found to be affected by the organizational state of the surfactants in solution. At low concentrations, where the surfactant molecules are present as solvated monomers, the monomers can readily adapt to the changing ferrocenium concentration with the potential potential scan. However, when the molecules are present as micellar structures in solution, a lower surfactant packing density was found because of the inability to respond effectively to the dynamically generated surface ferroceniums. This research demonstrates the potential utility of charge-transfer interactions for organizing materials at solid interfaces and effecting micromechanical actuation using an electrifical stimulus.
87

Transport électronique dans l'ADN

Heim, Thomas 09 December 2002 (has links) (PDF)
Transport électronique dans l'ADN Ce travail se situe dans le cadre des recherches en électronique moléculaire. La problématique de la conduction électrique dans l'ADN a été posée en 1962 par Eley et Spivey peu de temps après la découverte de la structure en double hélice de l'ADN par Watson et Crick en 1953. A l'heure actuelle, il n'y a pas de consensus sur les propriétés de conduction à travers l'ADN. Le transfert de charges sur des distances de quelques nanomètres a été étudié en solution et est assez bien compris. En revanche, les mesures directes sur des électrodes donnent des comportements allant de la supraconductivité induite à l'isolant, en passant par semi-conducteur. Notre travail a été motivé par cette controverse. Nous avons étudié les propriétés électroniques de l'ADN déposé sur différentes couches moléculaires auto-assemblées sur des substrats de silicium. La préparation des surfaces et le dépôt d'ADN constituent la première partie de notre étude. La conductivité de l'ADN a ensuite été mesurée entre des électrodes fabriquées sur un support isolant ou par le biais d'un AFM conducteur. Dans ce dernier cas, la pointe de l'AFM permet tout à la fois d'imager la surface et de servir de seconde électrode pendant la mesure électrique. Deux types de résultats ont été obtenus : les comportements vont de l'isolant au conducteur, les résistances s'étalent sur au moins 6 ordres de grandeur, de 109 W à 1015 W, avec toutefois une plus faible fréquence de mesure des conductivités élevées. Deux points permettent d'expliquer cette grande disparité : d'une part, l'obtention d'un contact électrique entre l'électrode et l'ADN et, d'autre part, la méthode de dépôt de l'ADN sur la surface. La formation d'un contact électrique entre l'électrode et l'ADN nécessite des traitements en général destructifs pour la molécule. Ce contact peut être amélioré en utilisant un paquet de molécules d'ADN comme intermédiaire entre l'électrode évaporée et la corde d'ADN que l'on étudie. Cependant, cette méthode ajoute une résistance série importante. Des mesures systématiques ont été réalisées en fonction de la distance de la pointe AFM au paquet d'ADN et du nombre estimé de brins d'ADN dans la corde. Le dépôt de l'ADN étant un facteur primordial, nous concentrons nos efforts sur ce point pour comprendre plus avant le lien entre la structure de l'ADN et ses propriétés de conduction. Mots-clés : Electronique moléculaire, nanobiotechnologie, ADN, dépôt d'ADN, Microscopie à Force Atomique, AFM conducteur, monocouche auto-assemblée
88

A novel biotinylated surface designed for QCM-D applications

Nilebäck, Erik January 2009 (has links)
<p> </p><p>Control of protein immobilization at sensor surfaces is of great interest within various scientific fields, since it enables studies of specific biomolecular interactions. To achieve this, one must be able to immobilize proteins with retained native structure, while minimizing non-specific protein binding. The high affinity interaction between streptavidin (SA) and biotin is extensively used as a linker between a surface, where SA is immobilized, and the (biotinylated) molecule of interest. Self- assembled monolayers (SAMs) of poly- and oligo ethylene glycol (PEG and OEG) derivatives have been proven in literature to minimize non-specific protein binding, and biotin-exposing SAMs have been shown efficient for immobilization of SA.</p><p>The aim of this master's thesis project was to develop biotinylated gold surfaces for quartz crystal microbalance with dissipation monitoring (QCM-D) applications through the self-assembly of mixed monolayers of thiolated OEG (or PEG) derivatives with or without a terminal biotin head group. For this, different thiol compounds were to be compared and evaluated. For the systems under study, the required biotin density for maximum specific SA immobilization was to be established, while keeping the non-specific serum adsorption at a minimum. Model experiments with biotinylated proteins immobilized to the SA-functionalized surfaces were to be performed to evaluate the possibilities for commercialization.</p><p>A protocol for the preparation of a novel biotinylated surface was developed based on the immersion of gold substrates in an ethanolic incubation solution of dithiols with OEG chains (SS-OEG and SS-OEG-biotin, 99:1) and found to give reproducible results with respect to low non-specific protein binding and immobilization of a monolayer of SA. The modified surfaces allowed for subsequent immobilization of biotinylated bovine serum albumin (bBSA) and biotinylated plasminogen (bPLG). PLG was the subject of a challenging case study, using a combination of QCM-D and surface plasmon resonance (SPR), where the immobilized protein was subjected to low molecular weight ligands that were believed to induce conformational changes. The high control of the surface chemistry allowed for the interpretation of the increased dissipation shift upon ligand binding in terms of conformational changes.</p><p>An obstacle before commercialization of the described biotinylated surfaces is that they do not seem stable for storage > 7 days. The reasons for this have to be investigated further.</p>
89

A novel biotinylated surface designed for QCM-D applications

Nilebäck, Erik January 2009 (has links)
Control of protein immobilization at sensor surfaces is of great interest within various scientific fields, since it enables studies of specific biomolecular interactions. To achieve this, one must be able to immobilize proteins with retained native structure, while minimizing non-specific protein binding. The high affinity interaction between streptavidin (SA) and biotin is extensively used as a linker between a surface, where SA is immobilized, and the (biotinylated) molecule of interest. Self- assembled monolayers (SAMs) of poly- and oligo ethylene glycol (PEG and OEG) derivatives have been proven in literature to minimize non-specific protein binding, and biotin-exposing SAMs have been shown efficient for immobilization of SA. The aim of this master's thesis project was to develop biotinylated gold surfaces for quartz crystal microbalance with dissipation monitoring (QCM-D) applications through the self-assembly of mixed monolayers of thiolated OEG (or PEG) derivatives with or without a terminal biotin head group. For this, different thiol compounds were to be compared and evaluated. For the systems under study, the required biotin density for maximum specific SA immobilization was to be established, while keeping the non-specific serum adsorption at a minimum. Model experiments with biotinylated proteins immobilized to the SA-functionalized surfaces were to be performed to evaluate the possibilities for commercialization. A protocol for the preparation of a novel biotinylated surface was developed based on the immersion of gold substrates in an ethanolic incubation solution of dithiols with OEG chains (SS-OEG and SS-OEG-biotin, 99:1) and found to give reproducible results with respect to low non-specific protein binding and immobilization of a monolayer of SA. The modified surfaces allowed for subsequent immobilization of biotinylated bovine serum albumin (bBSA) and biotinylated plasminogen (bPLG). PLG was the subject of a challenging case study, using a combination of QCM-D and surface plasmon resonance (SPR), where the immobilized protein was subjected to low molecular weight ligands that were believed to induce conformational changes. The high control of the surface chemistry allowed for the interpretation of the increased dissipation shift upon ligand binding in terms of conformational changes. An obstacle before commercialization of the described biotinylated surfaces is that they do not seem stable for storage &gt; 7 days. The reasons for this have to be investigated further.
90

Modulation of cell adhesion strengthening by nanoscale geometries at the adhesive interface

Coyer, Sean R. 11 May 2010 (has links)
Cell adhesion to extracellular matrices (ECM) is critical to many cellular processes including differentiation, proliferation, migration, and apoptosis. Alterations in adhesive mechanisms are central to the behavior of cells in pathological conditions including cancer, atherosclerosis, and defects in wound healing. Although significant progress has been made in identifying molecules involved in adhesion, the mechanisms that dictate the generation of strong adhesive forces remain poorly understood. Specifically, the role of nanoscale geometry of the adhesive interface in integrin recruitment and adhesion forces remains elusive due to limitations in the techniques available for engineering cell adhesion environments. The objective of this project was to analyze the role of nanoscale geometry in cell adhesion strengthening to ECM. Our central hypothesis was that adhesive interactions are regulated by integrin clusters whose recruitment is determined by the nanoscale geometry of the adhesive interface and whose heterogeneity in size, spacing, and orientation modulates adhesion strength. The objective of this project was accomplished by 1) developing an experimental technique capable of producing nanoscale patterns of proteins on surfaces for cell adhesion arrays, 2) assessing the regulation of integrin recruitment by geometry of the adhesive interface, and 3) determining the functional implications of adhesive interface geometry by systematically analyzing the adhesion strengthening response to nanoscale patterns of proteins. A printing technique was developed that patterns proteins into features as small as 90nm with high contrast and high reproducibility. Cell adhesion arrays were produced by directly immobilizing proteins into patterns on mixed-SAMs surfaces with a protein-resistant background. Colocalization analysis of integrin recruitment to FN patterns demonstrated a concentrating effect of bound integrins at pattern sizes with areas equivalent to small nascent focal adhesions. At adhesion areas below 333 × 333 nm2, the frequency of integrin recruitment events decreased significantly indicating a threshold size for integrin clustering. Functionally, pattern sizes below the threshold were unable to participate in generation of adhesion strength. In contrast, patterns between the threshold and micron sizes showed a relationship between adhesion strength and area of individual adhesion points, independent of the total available adhesion area. These studies introduce a robust platform for producing nanoscale patterns of proteins in biologically relevant geometries. Results obtained using this approach yielded new insights on the role of nanoscale organization of the adhesive interface in modulating adhesion strength and integrin recruitment.

Page generated in 0.2208 seconds