• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 56
  • 15
  • 15
  • 14
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Shear Strength of a PCBT-53 Girder Fabricated with Lightweight, Self-Consolidating Concrete

Dymond, Benjamin Zachary 19 December 2007 (has links)
The research conducted was part of a project sponsored by the Virginia Department of Transportation and the Virginia Transportation Research Council. One PCBT-53 girder was fabricated with lightweight, self-consolidating concrete. An additional composite cast-in-place lightweight concrete deck was added at the Virginia Tech Structures and Material Laboratory. The project had two specific goals. The first was to experimentally determine the shear strength of the bridge girder. The initial tests focused on the web-shear strength of the girder, and the second tests focused on the flexure-shear strength. The theoretical predictions for the web shear strength were all conservative when compared to the experimentally measured failure strength. The theoretical predictions of the flexure-shear strength were typically unconservative because during the flexure-shear test the girder reached the nominal flexural strength, and a failure occurred in the previously damaged region of the beam. Shear strength was also predicted using the design material properties. Results from these calculations suggested that the equation for the steel contribution to shear strength proposed in the NCHRP Simplified Method were unconservative. Further investigation into the results from the web-shear test showed that the maximum nominal shear strength calculated using the AASHTO LRFD Specifications was typically unconservative. Test results from this project suggested that the constant multiplier of 0.25 used in the LRFD equation for Vnmax may be too high. Further research may be needed to accurately quantify an upper limit on the shear strength. Additionally, predictions of the initial web-shear cracking load were conservative when using the AASHTO Standard Specifications and the NCHRP Simplified Method. The initial web-shear crack angle was under-predicted using the AASHTO LRFD Specifications. The second goal was to monitor the change in prestress over time (and hence the prestress loss) occurring in the PCBT-53 girder. Prestress losses were experimentally measured by vibrating wire gages (measured changes in concrete strain) and flexural load testing. Measured prestress losses were compared to a theoretical prediction calculated using the AASHTO Refined Method. The amount of prestress recorded at any given time using vibrating wire gages was greater than predictions from the AASHTO Refined method. The effective prestress measured just prior to deck placement was higher than the theoretical prediction, and the measured effective prestress at the time of testing was also higher than the theoretical effective prestressing force. The effective prestress value calculated using the flexural crack initiation method was significantly lower than the effective prestress values predicted by both the code provisions and the vibrating wire gages; however, the effective prestress value calculated using the flexural crack re-opening method corresponded very well with the effective prestress values predicted by the code provisions and measured by the vibrating wire gages. The discrepancy in the crack initiation effective prestress values may be due to prestress losses occurring between placement of the concrete and transfer of the prestress force. These losses are not taken into account when using current code provisions to estimate prestress losses. Additional research is recommended to determine if these losses occur in bulb-tee girders, and if so, to quantify them. Finally, from test results within the scope of this research project, design of prestressed bulb-tee girders with lightweight, self-consolidating concrete is practical. The current AASHTO LRFD Specifications provided conservative results when predicting the shear strength of the PCBT-53. Additionally, prestress losses in PCBT girders fabricated with lightweight, self-consolidating concrete were less than those predicted using the AASHTO Refined method. / Master of Science
12

Transfer Length, Development Length, Flexural Strength, and Prestress Loss Evaluation in Pretensioned Self-Consolidating Concrete Members

Trent, Justin David 04 June 2007 (has links)
The first objective of this thesis was to determine the effect of using self-consolidating concrete versus normal concrete on transfer and development lengths, and flexural strengths of prestressed members. Three small rectangular members were made, two cast with SCC mixes and one cast with a conventional mix, to determine the transfer length of each mix. Transfer lengths of both ends of each member were determined by measuring the concrete surface strains. The change in the transfer length was monitored by determining the transfer length of each member at prestress release, 7 days after release, and 28 days after release. All concrete mixes had lower than code determined transfer lengths at prestress release. Each concrete mix showed between a 12 to 56 percent increase in transfer length after 28 days. One SCC mix exceeded the ACI code stipulated 50 strand diameters 7 days after prestress transfer. The other SCC mix was consistently below the transfer length of the conventional concrete. Separate development length members were cast in a stay-in-place steel form used for creating structural double tees. Each development length member was a stub tee. Iterative load testing was performed to determine the development length of each SCC and conventional mix. Development lengths for both SCC mixes were approximately 20 percent shorter than ACI and AASHTO code predictions. A development length for the conventional concrete was not determined due to non-repeating test data. The flexural strength of each member was determined during load testing. All concrete mixes achieved higher than the ACI predicted strengths. The second objective of this thesis was to experimentally measure prestress losses and compare these experimental values to theoretical models. Crack initiation and crack reopening tests were performed to experimentally determine the prestress losses in each member. Three theoretical models were evaluated, the sixth edition PCI Design Handbook suggested model, a 1975 PCI Committee on Prestress Losses model, and the AASHTO LRFD prestress loss model. The crack initiation experimental values tended to be between 10 and 15 percent lower than theoretical models. In general, the crack reopening prediction of the effective prestress had a good correlation with theoretical models. This suggests crack reopening tests can be used as predictors of effective prestress, and as such, predictors of prestress losses in future experimental research. Additionally, the concrete type was shown to affect the prestress losses determined in the development length members. The SCC members tended to have higher effective prestress forces than the conventional concrete members, and thus had less prestress losses due to creep and shrinkage than the conventional concrete members. / Master of Science
13

Utilization Of Soda And Beer Wastes In Cementitious Systems

Aleessa Alam, Burhan 01 September 2009 (has links) (PDF)
To maintain the sustainability of cement and concrete production, there is a trend to use wastes in their production. Soda waste, generated by soda ash production process, and beer waste, generated by beer filtration process, are two locally produced wastes in Turkey and many other countries. The nature of these wastes, mostly their fineness, makes them possible to be used in concrete production, especially as a viscosity modifying agent in the self consolidating type of concrete. In this study, the addition of soda and beer wastes to self consolidating mortar (SCM) and self consolidating concrete (SCC), without any treatment but drying, and its effect on their properties were investigated. Mortar and concrete mixes were prepared using these two wastes as cement or aggregate replacement in various amounts. Tests like slump flow, V-Funnel and L-Box for determining the fresh properties, and compressive strength for the hardened properties of the mixtures were carried out to examine the effects of these wastes on the properties of SCM and SCC. The tests revealed that soda waste takes no role in the strength development of the mixes. However, it is possible to use this waste as aggregate replacement to improve the workability and flowability properties of SCM and SCC. The use of beer waste showed contradictive results. A special treatment for this waste before using it in concrete might be required.
14

Development and performance of fiber-reinforced self-consolidating concrete for repair applications / Développement et performance des bétons autoplaçants fibrés pour les applications de réparation

Kassimi, Fodhil January 2013 (has links)
Abstract: The use of self-consolidating concrete (SCC) in the concrete industry in cast-in-place applications, including repair applications, is growing given the various advantages offered in both fresh and hardened states. The present study deals with the design and performance of fiber-reinforced self-consolidating concrete (FR-SCC) as a repair material of concrete infrastructure. The study also considers the use of various steel and synthetic fibers (five fibers in total) that were used to produce FR-SCC and fiber-reinforced self-consolidating mortar (FR-SCM) that can be employed for structural and non-structural repair applications. The study evaluates the effect of material properties and mixture composition of the fibrous concrete and mortar on workability, mechanical, visco-elastic, durability, and structural behavior. The investigation that is presented in this thesis included the testing of 28 full-scale beams under four-point flexural loading. The majority of these beams were repaired by casting concrete to fill a relatively thin section along the tension zone of the beams. The repair technique was based on the FR-SCC characteristics including the maximum fiber volume and length. This technique required mixtures of high range of fluidity. The optimized FR-SCC and FR-SCM mixtures exhibited excellent flow characteristics along the 3.2-m long beams without blockage, segregation, nor debonding at the interface of repair-substrate concrete. Based on the structural characteristics of the composite beams, the overall performance of the beams repaired using the FR-SCC and FR-SCM was similar or higher (up to 2.6 times) than that of monolithic beams made with conventional vibrated concrete (CVC). The use of optimized FRSCC mixtures enabled the replacement of 50% of the tension steel reinforcement in repair sections; i.e., the number of bars in the tension zone decreased from three bars to two bars with the addition of fibers in the SCC without mitigating structural performance. The degree of prediction of crack width, cracking load/moment, ultimate loads, and deflection of various FR-SCC and FR-SCM mixture was evaluated using several design and code models. The results indicate that these code models can provide safe predictions for crack and ultimate loads, as well as crack width of FR-SCC. The deflection of FR-SCC is unsafe but predictable by these code models. In total, 18 large-scale beams were tested in four-point for flexural creep. FR-SCC incorporating steel fibers combined with expansive agent provided overall performance up to 10 times of that obtained with CVC with the same fiber type and volume. The cracking under constant load was reduced by 60% to 80% using self-consolidating fibrous mixtures made with or without expansion agents, compared to SCC without fibers. The best combination to reduce the cracking potential when the restrained shrinkage ring test was employed was obtained with SCC mixtures made with steel fibers and expansive agent. Models were elaborated to predict the time-to-cracking for FR-SCC and FR-SCM mixtures based on mixture modulus of elasticity and drying and autogenous shrinkages. The project involved extensive testing of highly flowable fibrous materials to determine drying shrinkage (nearly 260 prisms), modulus of rupture (nearly 180 prisms), as well as compressive and splitting tensile strengths and elastic modulus (nearly 2100 cylinders). Based on the results, models were proposed to predict these key material properties that affect the performance of FR-SCC and FR-SCM used in repair applications. In addition to FR-SCC, the investigation also was set to evaluate the feasibility of using fiber-reinforced superworkable concrete (FR-SWC) in construction and repair applications. Such highly flowable concrete that requires limited vibration consolidation can represent some advantages over FR-SCC (lower admixtures demand, lower risk of segregation, greater robustness, lower formwork pressure, etc.). The energy needed to ensure proper consolidation, using either vibration or rodding, applied on samples made with FR-SWC was determined. The energy requirement took into consideration the development of mechanical properties, the resistance to segregation, and the development of proper surface quality. The study also demonstrated the higher overall structural performance of optimized FR-SWC compared to the corresponding FR-SCC mixtures. The findings of the thesis on the design and performance of highly workable fiber-reinforced cementitious materials should facilitate the acceptance of such novel high-performance material in infrastructure construction and repair applications. // Résumé: L'utilisation du béton autoplaçant (BAP) dans l'industrie du béton dans les applications du coulage sur place incluant les applications de la réparation, est en croissance vu les divers avantages offerts à l'état frais et à l'état durci. La présente étude traite de la conception et la performance des bétons autoplaçants fibrés (BAPF) en tant que matériau de réparation des infrastructures en béton. L'étude considère également l'usage de différentes fibres métalliques et synthétiques (cinq fibres au total) qui ont été utilisées pour produire des BAPF et des mortiers autoplaçants fibrés (MAPF) pour des applications de réparations structurales et non structurales. L'étude évalue l'effet des propriétés du matériau et la composition des bétons et mortiers fibrés sur l'ouvrabilité, les propriétés mécaniques, viscoélastiques, de durabilité et le comportement structural. L'étude présentée dans cette thèse a inclus 28 poutres à grande échelle testées sous un chargement flexionnel à quatre points. La majorité de ces poutres a été réparée par le coulage du béton pour remplir une section relativement mince tout au long de la zone tendue des poutres. La technique de réparation a été basée sur les caractéristiques des BAPF incluant le volume maximal et la longueur maximale de fibres. Cette technique a requis des mélanges de haut niveau de fluidité. Les BAPF et MAPF ont exhibé d'excellentes caractéristiques d'écoulement le long de 3,2 m, la longueur de la poutre, sans blocage, ségrégation, ni décollement à l'interface entre le béton de base et le béton de réparation. En se basant sur les caractéristiques structurales des poutres composites, la performance globale des poutres réparées en utilisant les BAPF et les MAPF était similaire ou supérieure (jusqu'à 2,6 fois) que celle des poutres monolithiques fabriquées d'un béton conventionnel vibré (BCV). L'utilisation des mélanges de BAPF optimisés a permis de remplacer 50% du ferraillage tendu dans les sections de réparation; c'est-à-dire que le nombre des barres d'armatures dans la zone tendue a réduit de trois barres à deux barres avec l'addition de fibres dans le BAP sans mitiger la performance structurale. Le degré de prédiction de la largeur de fissures, charge de fissuration, charge ultime et déflexion de différents mélanges de BAPF et MAPF a été évalué en utilisant quelques designs et modèles de codes. Les résultats ont montré que ces modèles ont pu fournir de prédictions sécuritaires pour les charges de fissuration et ultime, ainsi que la fissuration des BAPF. La déflexion des BAPF est non sécuritaire mais reste prédictible par ces modèles de codes. En total, 18 poutres à grande échelle ont été testées en fluage flexionnel de quatre points. Des BAPF contenant des fibres métalliques combinées avec un agent expansif ont fourni une performance globale jusqu'à 10 fois celle obtenue avec un BCV contenant le même type et volume de fibres. La fissuration sous une charge constante a été réduite de 60% à 80% en utilisant des mélanges autoplaçants fibrés fabriqués avec ou sans agents expansifs, par rapport au BAP sans fibres. La meilleure combinaison pour réduire le potentiel de fissuration avec l'essai du retrait restreint a été obtenue avec des mélanges de BAP contenant de fibres d'acier et un agent expansif. Des modèles ont été élaborés pour prédire le temps de fissuration des mélanges de BAPF et MAPF basés sur le module d'élasticité du mélange et les retraits de séchage et endogène. Le projet comportait de nombreux essais sur les mélanges fibrés de haute fluidité à savoir la détermination du retrait de séchage (près de 260 prismes), le module de rupture (près de 180 prismes), ainsi que la résistance en compression, la résistance en traction et le module d'élasticité (plus de 2100 cylindres). En se basant sur les résultats, des modèles ont été proposés pour prédire ces propriétés clés qui affectent la performance des BAPF et MAPF destinés aux applications de réparation. En plus des BAPF, l'étude a aussi été faite pour évaluer la faisabilité de l'utilisation des bétons semi-fluides fibrés (BSFF) dans les applications de construction et de réparation. Tels bétons de haute fluidité requérant une consolidation limitée peuvent présenter certains avantages par rapport aux BAPF (plus faible demande en adjuvants, plus faible risque de ségrégation, robustesse supérieure, plus faible pression sur les coffrages, etc.). L'énergie nécessaire pour assurer une propre consolidation, en utilisant soit la vibration ou le piquage, appliquée sur des échantillons de BSFF a été déterminée. Les exigences de cette énergie considèrent le développement des propriétés mécaniques, la résistance à la ségrégation et la propre qualité de surface. L'étude a aussi démontré une performance structurale globale supérieure des BSFF optimisés par rapport aux mélanges de BAPF correspondant. Les conclusions de la thèse sur le design et la performance des matériaux cimentaires renforcés de fibres et de haute fluidité devraient faciliter l'acceptation de tels nouveaux matériaux de haute performance dans les applications de la construction et la réparation des infrastructures.
15

Performance des bétons autoplaçants développés pour la préfabrication d'éléments de ponts précontraints / Performance-based specifications of self-consolidating concrete designated for precast/prestressed bridge girder applications

Long, Wu Jian January 2008 (has links)
In the precast construction market, the competitive situation is significantly affected by price, cost, productivity, and quality factors. Since self-consolidating concrete (SCC) was first introduced to the concrete industry in the late 1980s, it has been used worldwide in variety of applications. Despite the documented technical and economic advantages of SCC in precast, prestressed applications, the use of SCC has been limited in some countries due to some technical uncertainties of such innovative material. To explore some unsolved issues related to SCC and to contribute to a wider acceptance of SCC in precast, prestressed applications, this study was undertaken to assess the effect of mixture proportioning and material characteristics on the performance of SCC and recommend performance-based specifications for use of SCC in the precast, prestressed applications. The thesis presents an experimental program that contains four parts: (1) a parametric study to evaluate the influence of binder type, w/cm, coarse aggregate type, and coarse aggregate nominal size on the modulus of elasticity and compressive strength developments; (2) a parametric study to evaluate the effect of mixture proportioning and material characteristics on fresh and hardened properties of SCC; (3) a fractional factorial design to identify the relative significance of primary mixture parameters and their coupled effects on SCC properties; and (4) a field validation using full-scale AASHTO Type II girders cast to investigate constructability, material properties, and structural performance (the latter part was carried out by the research team of Professor Denis Mitchell at McGill University). Based on the experimental test results, SCC exhibits similar compressive strength and modulus of elasticity to that of conventional high-performance concrete (HPC) of normal slump consistency. SCC and HPC mixtures made of a given binder type exhibit similar autogenous shrinkage. However, SCC exhibits up to 30% and 20% higher drying shrinkage and creep, respectively, at 300 days compared to HPC made with similar w/cm but different paste volume. The results of the experiment program show that among the investigated material constituents and mix design parameters, the w/cm has the most significant effect on mechanical and visco-elastic properties. The binder content, binder type, and sand-to-total aggregate ratio (S/A) also have considerable effect on those properties. The thickening-type viscosity modifying admixture (VMA) content (0 to 150 ml/100 kg CM) does not significantly affect mechanical and visco-elastic properties. Based on the findings, some mixture parameters regarding the overall performance of SCC designated for precast and prestressed applications can be recommended: SCC made with relatively low w/cm (such as 0.34 vs. 0.40) should be selected to ensure desirable compressive strength, modulus of elasticity (MOE), flexural strength, as well as less drying shrinkage and creep; the use of crushed aggregate with 12.5 mm MSA is suggested since it provides better mechanical properties of SCC compared to gravel; the use of low S/A (such as 0.46 vs. 0.54) to secure adequate mechanical and visco-elastic properties is recommended; the use of thickening-type VMA can help to secure robustness and stability of the concrete in the case of SCC proportioned with moderate and relatively high w/cm; and the use of Type MS cement can lead to lower creep and shrinkage than Type HE cement and 20% Class F fly ash. However, SCC mixtures made with Type HE cement and 20% Class F fly ash can result in better workability and mechanical properties. Therefore, it is recommended to use Type HE cement and 20% Class F fly ash and reduce binder content (such as 440 kg/m[exposant 3] vs. 500 kg/m[exposant 3]) to assure better overall performance of SCC. Validation on full-scale AASHTO-Type II girders using two HPC and two SCC mixtures show that girders casting with SCC can be successfully carried out without segregation and blocking for the selected optimized mixtures. The surface quality of the girders cast with SCC is quite satisfactory and of greater uniformity than girders cast with HPC. Both HPC and SCC mixtures develop similar autogenous shrinkage for mixtures made with similar w/cm. Again, the two evaluated SCC mixtures develop about 20% greater drying shrinkage than comparable HPC mixtures. Modifications of existing models to assess mechanical and visco-elastic properties of SCC used in the precast, prestressed applications are proposed. Based on the comparisons of various code provisions, the ACI 209 and CEB-FIP codes with suggested material coefficients can be recommended to estimate compressive strength. The modified AASHTO 2007 model can be used for predicting the elastic modulus and flexural strength. The AASHTO 2004 and 2007 models with suggested material coefficients can be used to estimate drying shrinkage and creep, respectively. The CEB-FIP 90 code model can be used to predict both drying shrinkage and creep. Finally, the modified Tazawa and Miyazawa 1997 model with material modifications can be used to estimate autogenous shrinkage of SCC.
16

Effet de la température et de l'agitation sur les propriétés rhéologiques des bétons fluides à rhéologie adaptée

Pan, Jing January 2015 (has links)
Résumé : Le climat local, le transport avec l’agitation entre l’endroit de bétonnage et le site de fabrication du béton influencent fortement les propriétés du béton frais et durci. Selon les particularités du béton autoplaçant (BAP), le maintien de l’homogénéité et l’ouvrabilité du BAP avant la mise en place est très important. Les propriétés des BAP sont généralement plus sensibles à la température et au transport par rapport à celles des bétons conventionnels. Une meilleure compréhension de l’effet de la température et de l’agitation sur la performance des BAP est nécessaire pour prévoir les conséquences du changement du climat (température) et de l’effet du transport (temps et vitesse d’agitation), puis pour donner des précautions à suivre afin de répondre à la demande des BAP pour un bon rapport performance-coût. De manière pragmatique, il s’avère nécessaire d’utiliser la méthode du mortier de béton équivalent (MBE) afin d’analyser rapidement les influences de la température et de l’agitation sur les propriétés rhéologiques, calorimétriques et mécaniques des BAP. Cinq températures (8, 15, 22, 29 et 36°C) et deux vitesses d’agitation (6 et 18 tr/min) ont été étudiées sur les MBE. Ensuite, quelques compositions spécifiques (type d’adjuvant et ajout cimentaire) ont choisies afin de vérifier avec des températures compasse entre 8 à 36°C et les agitations différentes (2 et 6 tr/min) sur les BAP destinés aux travaux de bâtiment (BAP-B) sans agent entraîneur d’air et sur des bétons semi-autoplaçant destinés aux travaux d’infrastructures (BSAP-I) avec agent entraîneur d’air. La fluidité initiale des MBE et BAP a été fixée en faisant varier la demande en SP, la température et l’agitation. Les résultats montrent qu’il y a un effet important de la température et de l’agitation sur l’efficacité des adjuvants, la fluidité, la teneur en air, les propriétés rhéologiques, calorimétriques et mécaniques des MBE et des BAP. Pour prévoir la performance de MBE à différentes températures, une équation mathématique est proposée pour déduire la demande en SP, la demande en AEA, le flux maximal et la résistance en compression à 1 jour en fonction des mêmes propriétés sur MBE à 22°C et de la température. Enfin, une corrélation linéaire a été trouvée entre les MBE et les BAP sur ces mêmes propriétés. / Abstract : The local climate, the transport of agitated concrete after manufacturing but before being cast strongly influence the properties of the fresh and hard concrete. It’s important to keep the stability and workability of the self-consolidating concrete (SCC) because of its special characteristics. Compare to the normal concrete, the properties of SCC are generally more sensitive to the temperature and the transport. Therefore it’s necessary to understand the effects of the temperature and the agitation on the performance of the SCC in order to predict the consequences of climate change (temperature) and transport (time and speed of agitation), and then to give the better precautions with a good performance-cost report. In this study, the concrete mortar equivalent (CEM) method is used to quickly analyze the influences of the temperature and the agitation on the rheological, calorimetric and mechanical properties of the SCCs. Five temperatures (8, 15, 22, 29 and 36°C) and two agitation speed (6 and 18 tr/min) are varied in CEMs. And then, some compositions (type of adjuvant and supplementary cementing material) are chosen to be valued with the temperature (8-36°C) and the agitation (2 and 6 tr/min) in SCCs for the building without air-entraining admixture (AEA) and semi-flowable SCC for infrastructure with AEA. The initial slump flow of CEM and SCC is fixed, but the demand superplasticizer, the temperature and the agitation were varied. The results show that there are the effects of temperature and agitation on the effectiveness of admixture, the slump flow, the air content, the rheological, calorimetric and mechanical properties of CEM and SCC. A mathematical equation is proposed to predict the performance of SCC at different temperatures for the SP and AEA requirement, the maximum of heat flow and the compressive strength at one day by these same properties of SCC at 22°C and by the temperature. Finally, a good linear correlation is found between CEM and SCC for these properties.
17

Alleviating concrete placement issues due to congestion of reinforcement in post-tensioned haunch-slab bridges

Sheedy, Patrick January 1900 (has links)
Master of Science / Department of Civil Engineering / Robert Peterman / A flowable hybrid concrete mix with a spread of 17 to 20 inches was created with a superplasticizer to be used in post-tension haunch-slab (PTHS) bridges where rebar congestion is heaviest. The mix would allow for proper concrete consolidation. A conventional concrete mix with a slump of three to four inches was also created to be placed on top of the hybrid mix. The conventional mix would be used to create a sloping surface on the top of the concrete. The two mixes could be combined in the PTHS bridge deck and act as one monolithic specimen. Standard concrete tests such as compressive strength, tensile strength, modulus of elasticity, permeability, freeze/thaw resistance, and coefficient of thermal expansion were determined for the mixes and compared. Core blocks were cast using both mixes and composite cores were drilled. The cores were tested and their composite split-tensile strengths were compared to the split-tensile strengths of cylinders made from the respective mixes. A third concrete mix was made by increasing the superplasticizer dosage in the hybrid concrete mix to create a self-consolidating concrete (SCC) mix with a 24-inch spread. The SCC mix was created as a worst-case scenario and used in the determination of shear friction. Eighty-four push-off shear friction specimens were cast using the SCC mix. Joint conditions for the specimens included uncracked, pre-cracked, and cold-joints. Uncracked and pre-cracked specimens used both epoxy- and non-epoxy-coated shear stirrups. Cold-joint specimens used both the SCC mix and the conventional concrete mix. Joint-conditions of the cold-joint specimens included a one-hour cast time, a seven-day joint with a clean shear interface, and a seven-day joint with an oiled shear interface. The shear friction specimens were tested using a pure shear method and their results were compared to the current American Concrete Institute code equation.
18

Performance of No Vibration/No Admixture Masonry Grout Containing High Replacement of Portland Cement with Fly Ash and Ground Granulated Blast Furnace Slag

Bateman, Eric 01 February 2014 (has links)
When hollow concrete masonry is used for construction in high seismic regions, structural designs typically require fully grouted walls. The grouting process is labor-intensive, time-consuming and has a high energy demand due to requirements of consolidation in each and subsequent grout lifts. Self-consolidating grout with admixtures has been successfully used without segregation in walls of up to 12.67 ft. in height. Investigation of self-consolidating grout mixes without admixtures has potential for sustainability improvement. This thesis reports on the compression strength and consolidation observations of self-consolidating characteristics of no vibration/no admixture grout made by substituting various proportions of Portland cement with Type F fly ash and/or ground granulated blast furnace slag (GGBFS). The percentages of Portland cement replacement evaluated were 0%, 50%, 60%, and 70% for Type F fly ash. The percentages of Portland cement replacement evaluated were 0%, 60%, 70% and 80% for Type F fly ash and GGBFS. Grout compressive strengths were evaluated from individually filled grout specimens constructed in concrete masonry hollow core units, dry cured, and tested after 7, 14, 28, 42, 56, and 130 days. Also, hollow concrete masonry walls were built 12.67 ft. tall and grouted. The relative performance was assessed by comparing to conventional grouted masonry and evaluating consolidation characteristics around mortar fins and reinforcement; compressive strength tests after 130 days of curing, and rebar pull-out tests were taken from various wall heights. All experimental grouts had acceptable consolidation characteristics but fly ash replacement grouts did not meet the compressive strength requirements.
19

A Collection of New Studies Using Existing and Proposed Techniques and Instrumentation for Nondestructive Testing and Analysis of Concrete Materials and Structures

Boone, Shane D 01 May 2008 (has links)
A variety of studies were performed using existing and newly proposed techniques and instrumentation to further the understanding of nondestructive testing of concrete. A new combined stress wave propagation method was developed that combined the existing methods of the spectral analysis of surface waves, impact echo, and free-free resonant column experimental and analysis techniques. The method was used to determine the stiffness profile and location of embedded voids in a concrete tunnel lining modeled as a three layer concrete slab. A new equation was proposed that predicted the level of damage of concrete samples based on the functions of the change in first mode longitudinal frequency and the absorption of energy during cyclic loading to failure. During this study, new instrumentation was developed that aided in the dynamic stiffness measurements during the cyclic loading. A comparison of the static and dynamic Young’s modulus was performed. It was found that the ratio of these two moduli depend on a concrete’s strength and damping properties as well as the age of the specimen. A new equation was proposed using these three properties to determine the ratio of static to dynamic Young’s modulus. An experimental program was performed on samples of high performance self-consolidating concrete (HPSCC). The HPSCC exceeded expected values of strength and stiffness over that of regular high performance concrete. Finally, a comparison of prestress losses in prestressed bridge girders fabricated using the HPSCC was conducted. Prestress losses were measured and calculated using the American Association of State Highway and Transportation Officials (AASHTO) LRFD 2004 and 2007 Specifications. It was determined that the AASHTO LRFD 2007 Specifications most accurately predict the measured prestress losses.
20

Behaviour of Self Consolidating Steel Fiber Reinforced Concrete Beams Under Reversed Cyclic Loading

Aghniaey, Nima 07 February 2013 (has links)
Concrete is a very weak and brittle material in tension. It has been shown in previous researches that the addition of steel fibers to a concrete matrix can improve this behavior. The ability of fibers to control and redistribute stresses after cracking results in a number of improvements in the structural behaviour of concrete. A review of existing literature shows that the addition of steel fibers enhances concrete’s tensile resistance, crack control properties, ductility and damage tolerance. In beams, fibers can transform brittle shear response into a flexural response and promote ductility, thereby allowing for a full or partial replacement of traditional shear reinforcement. The enhanced shear capacity, ductility and damage tolerance of Steel Fiber Reinforced Concrete (SFRC) can also potentially be used to relax seismic detailing requirements in frames by partially replacing the required transverse reinforcement in the plastic hinge regions of RC beams. One of the drawbacks associated with SFRC is that the addition of steel fibers to a traditional concrete mix at high fiber contents can result in workability problems. The combined use of Self-Consolidating Concrete (SCC) and fibers can solve this problem and facilitate placement for a wider range of structural applications. Although several studies have been conducted on the behaviour of SFRC beams subjected to monotonic loading, there is limited research on the behaviour of SFRC beams under cyclic or reverse-cyclic loading. This thesis presents the results of an experimental and analytical study conducted on nine SFRC beam specimens tested under load reversals. The main objective of this research program was to investigate the effect of fibers on structural behaviour and to examine the ability of steel fibers to replace transverse reinforcement. The experimental and analytical results show that use of fibers results in several improvements in behaviour, including enhanced damage tolerance and post-peak ductility. The results also show that steel fibers can potentially be used to allow for a reduction of transverse reinforcement in beams, however further research is required.

Page generated in 0.0783 seconds