• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Computational Complexity, Fairness, and the Price of Anarchy of the Maximum Latency Problem

Correa, Jose R., Schulz, Andreas S., Stier Moses, Nicolas E. 05 March 2004 (has links)
We study the problem of minimizing the maximum latency of flows in networks with congestion. We show that this problem is NP-hard, even when all arc latency functions are linear and there is a single source and sink. Still, one can prove that an optimal flow and an equilibrium flow share a desirable property in this situation: all flow-carrying paths have the same length; i.e., these solutions are "fair," which is in general not true for the optimal flow in networks with nonlinear latency functions. In addition, the maximum latency of the Nash equilibrium, which can be computed efficiently, is within a constant factor of that of an optimal solution. That is, the so-called price of anarchy is bounded. In contrast, we present a family of instances that shows that the price of anarchy is unbounded for instances with multiple sources and a single sink, even in networks with linear latencies. Finally, we show that an s-t-flow that is optimal with respect to the average latency objective is near optimal for the maximum latency objective, and it is close to being fair. Conversely, the average latency of a flow minimizing the maximum latency is also within a constant factor of that of a flow minimizing the average latenc
12

Functional interactions of chromosome segregation factors with the 2 micron plasmid : possible evolutionary link between the plasmid portioning locus and the budding yeast centromere

Huang, Chu-Chun 01 June 2011 (has links)
The 2 micron plasmid of Saccharomyces cerevisiae is a multi-copy circular DNA genome that resides in the nucleus and exhibits nearly chromosome-like stability in host populations. Several host factors are required for equal plasmid segregation during cell division. One of them is cohesin (a multi-subunit protein complex) which mediates sister chromatid cohesion, a crucial mechanism for faithful segregation of replicated chromosomes in eukaryotes. The 2 micron plasmid mimics chromosomes in assembling cohesin at its partitioning locus. Studies on minichromosomes (centromere containing plasmids) reveal that cohesin forms a ring that embraces replicated sister centromeres topologically rather than physically. The functional similarities between chromosome and plasmid segregation prompted us to examine whether the topological mechanism proposed for centromere-mediated replicative cohesion is also true in the case of the plasmid. In the present study, we have characterized the nature and stoichiometry of cohesin's association with the 2 micron plasmid. Another host factor required for equal plasmid segregation is the CenH3 histone variant Cse4, so far considered to be uniquely associated with centromeric nucleosomes. Cse4 provides an epigenetic landmark at centromeres, and is required for assembly of the kinetochore complex. Surprisingly, Cse4 also interacts with the 2 micron plasmid partitioning locus. We have now functionally characterized this interaction, which can be preserved even in an ectopic, chromosomal context. The steady state level of Cse4 is highly limiting in yeast due to ubiquitin-mediated proteolysis. Only centromere-associated Cse4 is protected from this regulatory turnover control. We find that, in contrast to the situation with centromeres, association of Cse4 with the 2 micron plasmid is highly sub-stoichiometric but still promotes equal plasmid segregation. We also find that Cse4 induces an unusual right handed DNA writhe at the plasmid partitioning locus, as it does at the centromere. Our findings suggest that the plasmid has designed strategies to minimize the utilization of host factors that are in short supply. They signify the advantage of clustering and group behavior in the evolutionary success of a multi-copy selfish genome. Finally, they also suggest the possible emergence of the yeast centromere and the plasmid partitioning locus from a common ancestral sequence. / text
13

基於耐延遲網路之移動式信任者與獎勵機制設計 / Mobile trusted bank and incentive strategy design in delay tolerant networks

林昶瑞, Lin, Chan Juei Unknown Date (has links)
DTN(Delay Tolerant Networks)是一種缺乏網路基礎設備的網路架構,在這類的網路架構下,無線節點之間的通訊連線並非同時存在,而是間歇式建立的。因為節點的移動、或是裝置省電模式運作與環境因素的影響,造成連線可能不定時的失效。有不保證連線特性的網路,在DTN網路中節點間相遇的機會很少,節點間利用 Store-Carry-Forward 的方式傳遞訊息,且有相當長的傳遞延遲(Propagation Delay)。在這樣的網路特性下,傳統的文獻中,都是假設所有節點都會幫忙傳遞。但不幸的,在現實生活中有自私節點(Selfish Nodes)的存在,因自己本身設備資源有限,如電力資源、網路資源...等,節點不願意幫忙傳送訊息,這些自私節點的存在,會對DTN網路架構造成破壞,導致無法傳送訊息到目的地。為了解決自私節點的問題,我們提出了MTBIS(Mobile Trusted Bank of Incentive Strategies),當發送節點(Source Node)要求傳送訊息時,給予回饋給幫忙轉傳訊息的節點,來鼓勵節點間互相幫忙傳送訊息,我們稱這些回饋為Incentive Credit。而節點也可利用Incentive Credit來要求別的節點幫忙轉傳訊息。另外也加入SI(Social Incentive)機制,與DGT(Dynamic Grudger Threshold) ,吸引自私節點願意幫忙轉傳訊息,改進了 MTBIS 在自私節點環境下的不足, 利用經濟學的角度來解決節點運用Credit的問題,借此提高訊息的傳遞率(Delivery Ratio)。 本篇研究也注重於自私節點的模擬,利用四種不同特性的節點: Sucker(傻瓜)、Cheater (騙子)、Grudger(小氣鬼)、Ecci(投機者), 這些自私節點會照成DTN在設計上無法使用,甚至降低訊息的傳達率,因此我們模擬了這些自私節點的行為,並且使用我們所提出的獎勵機制,來解決這些自私節點的問題,實驗結果也證明,Grudger可以有效的抑制自私節點對效能大幅降低的問題,與傳統的演算法相較,效能高出34%。 / DTN (Delay Tolerant Networks) is a network structure without need to use any infrastructure. In DTNs, wireless connections between nodes do not always exist, i.e., nodes are connected intermittently. Due to the mobility, power issues, or surrounding environment of nodes, connections between nodes may be disruptive occasionally or randomly. In a DTN, nodes usually transfer the message to the encountering nodes. By this way, the messages are stored, carried, and forwarded to the next nodes, possibly the destination. However, in reality, nodes may not be willing to help each other for the message forwarding. More specifically, there are “Selfish nodes” which refuse to forward messages due to issues such as energy and network bandwidth. Thus it will prevent messages from being forwarded to its destination. In order to solve the problem of message forwarding failure caused by selfish nodes, we proposed an Incentive Strategy called “MTBIS (Mobile Trusted Bank and Incentive Strategies)”. We construct a rewarding scheme called “Incentive Credit” for nodes who forward the messages for the source node. In addition, to increase the intention of the selfish nodes for forwarding messages, we add two more mechanism called SI(Social Incentive) and DGT(Dynamic Grudger Threshold). The DGT uses credits to solve selfish node problems from an economics point of view to enhance MTBIS to work with existence of selfish nodes. In this thesis, we emphasis on the simulation of the behaviors of selfish nodes, using four different types of nodes: the “Sucker”, the “Cheater”, the “Grudger”, and the “Ecci”. These selfish nodes will decrease the success rate of message forwarding, and even make the DTN unusable. We simulated the behaviors of these selfish nodes, using the rewarding scheme we proposed. From the results of our experiment, we see that the Grudger can effectively deal with performance issues caused by selfish nodes, and the system can gain 34% in performance compared to the traditional algorithms.
14

Genetics and ecology of an unusual sex ratio distorter in the booklouse Liposcelis sp.

Curtis, Caitlin I. 24 December 2018 (has links)
Selfish genetic elements can distort the sex ratios of their hosts by increasing their own transmission to the next generation in a non-mendelian fashion. These elements can be either nuclear genes on a sex chromosome or cytoplasmically inherited microbes, and achieve an increased transmission by manipulating gametogenesis or host reproduction. Often these selfish elements benefit from a female biased population (for example heritable microbes are passed on maternally in the egg cytoplasm), while non-selfish, autosomal genes are selected to produce a balanced sex ratio. These differing reproductive strategies cause a genetic conflict that results in an “evolutionary arms race” that can promote the evolutionary change of sex determination systems. In this thesis, I investigate an extreme sex ratio distortion in a species of booklouse, Liposcelis sp. This species contains two distinct female types, one of which carries a maternally transmitted selfish genetic element that results in exclusively female offspring being produced. Recently, a candidate for the sex ratio distortion was identified as a horizontally transferred bacterial gene, that we have called Odile, and that is present in the genome of the (distorter) female carrying the distorting element. The gene originates from the endosymbiotic bacterium Wolbachia that is well known for its ability to distort the sex ratio of its hosts. I investigated this horizontal gene transfer event and attempt to characterize Odile. I provide evidence that this Wolbachia gene has been integrated into the genome of the distorter females and is not a bacterial contaminant. I found that the Odile gene has been duplicated and may have been horizontally transferred from Wolbachia independently to at least three other insect genomes. Additionally, I found that Odile is transcribed at low levels in a life-stage specific manner that is suggestive of a role in development. Additionally, I looked into male mate choice in this species as one aspect of the persistence of the distorting element. I found that male Liposcelis sp. do not discriminate between the two female types and do not spend more time mating with one female type over the other. These results contribute to ongoing research into the extreme sex ratio distortion found in this species and the candidate gene that may be the cause. Selfish genetic elements are an important driver of sex determination evolution, and Liposcelis sp. provides a unique and exciting system to investigate the implications of selfish elements in a genome further. / Graduate / 2019-12-17
15

X chromosome drive in Drosophila testacea

Keais, Graeme 01 May 2018 (has links)
Selfish genes that bias their own transmission during gametogenesis can spread rapidly in populations, even if they contribute negatively to the fitness of their host. Driving X chromosomes provide a clear example of this type of selfish propagation. These chromosomes, which are found in a broad range of taxa including plants, mammals, and insects, can have important evolutionary and ecological consequences. In this thesis, I report a new case of X chromosome drive (X drive) in a widespread woodland fly, Drosophila testacea. I show that males carrying the driving X (SR males) sire 80-100% female offspring, and that the majority of sons produced by SR males are sterile and appear to lack a Y chromosome. This suggests that meiotic defects involving the Y chromosome may underlie X drive in this species. Abnormalities in sperm cysts of SR males reflect that some spermatids are failing to develop properly, confirming that drive is acting during gametogenesis. Further, I show that SR males possess a diagnostic X chromosome haplotype that is perfectly associated with the sex ratio distortion phenotype. Phylogenetic analysis of X-linked sequences from D. testacea and related species strongly suggests that the driving X arose prior to the split of D. testacea and its sister species, D. neotestacea and D. orientacea. Suppressed recombination between the XST and XSR due to inversions on the XSR likely explains their disparate evolutionary histories. By screening wild-caught flies using progeny sex ratios and a diagnostic X-linked marker, I demonstrate that the driving X is present in wild populations at a frequency of ~10% and that autosomal suppressors of drive are segregating in the same population. Both SR males and homozygous females for the driving X have reduced fertility, which helps to explain the persistence of the driving X over evolutionary timescales. The testacea species group appears to be a hotspot for X drive, and D. testacea is a promising model to compare driving X chromosomes in closely related species, some of which may even be younger than the chromosomes themselves. / Graduate / 2019-04-16
16

ADHD i film : En undersökning om andrafiering och representationen av ADHD

Antonsen, Ida, Kuntze, Johanna January 2024 (has links)
Frågor som relaterar till ADHD är vanligt förekommande i den svenska samhällsdebatten. Det är därför intressant att studera hur funktionsnedsättningen visas i populärkulturen, närmare bestämt i film. Uppsatsens syfte var att synliggöra hur representationen av ADHD kan se ut i film med utgångspunkt i andrafiering. Detta gjordes genom att analysera de tre filmerna, The Selfish Giant (2013), Så jävla easygoing (2022) och Charlie Bartlett (2007). Detta då samtliga hade en huvudkaraktär med ADHD. Uppsatsens tankesätt och struktur utgick i stort från Fiskes (1984) binära oppositioner. Resultaten av analysen visade att ADHD andrafieras i film. Samtliga av de karaktärer med ADHD som analyserades hade problem med sociala normer, dysfunktionella familjer och hamnade lätt i brottslighet. Deras funktion i filmerna var även att utveckla andra karaktärer snarare än sig själva.
17

Repeated Selfish Routing with Incomplete Information

Yu, He 04 1900 (has links)
<p>Selfish routing is frequently discussed. The general framework of a system of non-cooperative users can be used to model many different optimization problems such as network routing, traffic or transportation problems.</p> <p>It is well known that the Wardrop user equilibria (i.e. the user optima) generally do not optimize the overall system cost in a traffic routing problem.</p> <p>In order to induce the equilibrium flow to be as close to the optimal flow as possible, the term “toll” is introduced. With the addition of tolls, a traffic system does not show the actual cost to the users but the displayed cost of users, which is the summation of the actual cost and the toll. A common behavioral assumption in traffic network modeling is that every user chooses a path which is perceived as the shortest path, then the whole system achieves the equilibrium of the displayed cost. It is proved that there exists an optimal toll which can induce the equilibrium flow under displayed cost to be the optimal flow in reality.</p> <p>However, this conclusion holds only if the selfish routing executes only once. If the game is played repeatedly, the users will detect the difference between the actual and displayed costs. Then, they will not completely trust the information given by the system and calculate the cost. The purpose of this thesis is to find out the optimal strategy given by the system–how to set tolls in order to maintain the flow as close to the optimal flow as possible.</p> / Master of Science (MSc)
18

Using Reputation in Repeated Selfish Routing with Incomplete Information

Hu, Kun 10 1900 (has links)
<p>We study the application of reputation as an instigator of beneficial user behavior in selfish routing and when the network users rely on the network coordinator for information about the network. Instead of using tolls or artificial delays, the network coordinator takes advantage of the users' insufficient data, in order to manipulate them through the information he provides. The issue that arises then is what can be the coordinator's gain without compromising by too much on the trust the users put on the information provided, i.e., by maintaining a reputation for (at least some) trustworthiness.</p> <p>Our main contribution is the modeling of such a system as a repeated game of incomplete information in the case of single-commodity general networks. This allows us to apply known folk-like theorems to get bounds on the price of anarchy that are better than the well-known bounds without information manipulation.</p> / Master of Computer Science (MCS)
19

Cheating and Selfishness in Reproductive Interactions among Nest Associative Cyprinids

Floyd Jr, Stephen Preston 13 June 2016 (has links)
Mutualism is an understudied interaction in ecosystems throughout the world. Within the eastern United States, one fish-fish mutualism is the nest association between Nocomis and other cyprinids. I assessed the role of host parental care while testing for the selfish-herd effect. Additionally, I examined multiple nest associates in order to elucidate potential cheaters. I utilized gonadosomatic index (GSI) to compare reproductive condition among the bluehead chub Nocomis leptocephalus and its putative nest associates in Catawba Creek, Virginia. GSI of potentially obligate associates tracked host GSI more closely than weak associates, while weak associates spawned prior to Nocomis spawning. Given their GSI patterns and behavior, central stonerollers Campostoma anomalum may be cheaters in the interaction. I used multiple experiments to test for the selfish-herd effect, the role of parental care, and how relative risk influences reproductive decisions of associates. Most eggs were located in the bottom upstream quarter of nests, and a molecular analysis revealed that stonerollers and chubs constituted the majority of identified individuals. A comparison of host-associate ratios from four nest sections failed to identify the selfish herd effect. Another experiment found that host egg covering significantly reduced egg predation. Lastly, I assessed relative egg predation risk at four potential spawning locations; predation levels did not differ significantly at any location. While GSI patterns suggest that stonerollers may be cheaters, genetic evidence indicates that stonerollers spawn on Nocomis nests. Because GSI does not completely assess reproduction, secondary stoneroller reproduction on Nocomis nests may have been overlooked. / Master of Science
20

Two Layers of Selfish-Herds in Spawning Aggregations of Chub (Nocomis Sp.) and its Nest Associates

Betts, Madison 18 August 2023 (has links)
Many species have evolved to live in groups. Gregarious behavior was believed to be adaptive for whole-population survival and predator evasion until selfish-herd theory was introduced. It proposed that individuals congregate not as a method of protection for the entire population, but instead to better the individual's chance of survival, thereby using the group to benefit itself (i.e., "selfishness"). Selfish behavior is a common part of mutualisms, which are complex, dynamic interactions that often change with biotic or abiotic circumstance. Here, I investigate potential selfish behavior within the mixed-species spawning aggregations hosted by bluehead chub (Nocomis leptocephalus). I hypothesized that the host benefits more directly from the aggregation it supports than previous research suggests – specifically, by using nest associates to decrease its own risk of predation (creating a selfish-herd) and simultaneously forcing associate embryos into marginal nest locations while locating its own embryo in the safer locations within the nest (creating an "embryonic selfish-herd"). In Chapter 1, I investigated the adult spawning aggregation for possible selfishness by monitoring the chub's spatial location within the aggregation and vigilance behavior under varying associate abundances. I found that the host occupied the central location within the aggregation and was less vigilant when associate abundance was high. In Chapter 2, I examined the "embryonic herd" contained within Nocomis nests for possible embryonic selfishness orchestrated by the chub host, leading to increased embryonic survival for chub young and elevated fitness for chub parents. I found that deeper nest sections support higher embryonic survival than shallower sections, and that chub embryo make up a disproportionate percentage of embryos found in those deeper sections. I also conducted a preliminary study investigating embryo-predation by host on associate embryo which produced evidence for embryo-predation by both host and two associates on each other's offspring. Cohesively, my results support the identification of the host as a selfish participant and confirm the presence of both an adult and embryonic selfish-herd in this mutualism. This is the first study to demonstrate selfish behavior on the part of the host in this system and the first to prove the existence of an embryonic selfish-herd. / Master of Science / A fish has three goals: to survive, to grow, and to reproduce. Mutualisms – when all participants experience a net benefit from interacting – arise when two or more species rely on each other to meet these objectives. In many mutualisms, however, not all participants benefit equally. Selfish-herd theory identifies those that maximize their own benefit while minimizing or negating any cost as "selfish" individuals. I examined the mutualistic mixed-species spawning aggregations hosted by a freshwater minnow, bluehead chub (Nocomis leptocephalus), for possible selfish behavior. I found that bluehead chubs disproportionately benefit from the aggregations they host and use the aggregation to improve their own survival, improve their offspring's survival, and obtain food (by eating others' offspring). Thus, I identify bluehead chub as a selfish participant and provide evidence for the existence of two selfish herds in this mutualism – one among the adult fishes and one among their young – both orchestrated by and benefiting the bluehead chub. This study is the first to identify the bluehead chub as such and rewrites our previous understanding of this mutualism, which largely denied bluehead chub as a direct beneficiary. This work contributes to the global discussion of mutualisms by attesting the complexity of these relationships and offers support for re-examination of the classification of many known interspecific interactions, such as those cursorily termed nest parasitisms.

Page generated in 0.0241 seconds