Spelling suggestions: "subject:"semiconductor anda 0ptical matematerials"" "subject:"semiconductor anda 0ptical datenmaterials""
51 |
Strong Spin Orbital Coupling Effect on Magnetic Field Response Generated by Intermolecular Excited States in Organic SemiconductorsYan, Liang 01 August 2011 (has links)
It has been found that non-magnetic organic semiconductors can show some magnetic responses in low magnetic field (<100 >mT). When applying magnetic field, the electroluminescence, electrical current, photocurrent, and photoluminescence could change with magnetic field, which are called magnetic field effects.
Magnetic field effects are generated through spin-dependent process affected by the internal magnetic interaction. In nonmagnetic materials, hyperfine interaction has been supposed to dominantly affect the spin-dependent process recently. But the conclusion was made in weak spin-orbital coupling organic semiconductor. The hyperfine interaction might not be the main reason responsible for magnetic field effects in strong spin-orbital coupling materials. Therefore, the study of magnetic field effects in strong spin-orbital coupling organic semiconductor is important to get a whole view of the origin of the magnetic field effects in nonmagnetic organic semiconductors.
This dissertation will clarify the generation mechanism of magnetic field effect in nonmagnetic organic semiconductors and further explore how the strong spin-orbital coupling affecting the magnetic field effect.
It has been found the intermolecular excited states are important inter-median for magnetic field effects. The change of intersystem crossing at intermolecular excited states will change the singlet/triplet ratio and further generate magnetic field effects through different recombination and dissociation properties of singlet and triplet intermolecular excited states.
Both the energy transfer effect coupled spin orbital coupling and energy transfer effect free spin orbital-coupling are discussed in the dissertation. The tuning of the magnetic field effect by adjusting the spin-orbital coupling is also established through distance effect and interface effect. It has been found that changing inter-molecular spin-orbital coupling is a critical factor to generate magnetic field effects in organic semiconductors. And the sensitivity of different magnetic field effects to strong spin-orbital coupling strength is depending on the final product.
The internal magnetic interaction can be hyperfine interaction, spin orbital coupling and spin-spin interaction between electrons. The hyperfine interaction and spin orbital coupling are important in nonmagnetic organic semiconductors. But the electron spin-spin interaction is important in magnetic organic semiconductors. The magnetocurrent for magnetic and nonmagnetic organic semiconductors at different temperature has been compared.
|
52 |
DISCOVERY AND DEVELOPMENT OF RARE EARTH ACTIVATED BINARY METAL HALIDE SCINTILLATORS FOR NEXT GENERATION RADIATION DETECTORSYang, Kan 01 August 2011 (has links)
This work focuses on discovery and development of novel binary halide scintillation materials for radiation detection applications. A complete laboratory for raw materials handling, ampoule preparation, material rapid synthesis screening, single crystal growth, sample cutting, polishing and packaging of hygroscopic halide scintillation materials has been established. Ce3+ and Eu2+ activated scintillators in three binary systems: Alkali Halide – Rare Earth Halide (AX–REX3), Alkali Halide – Alkaline Earth Halide (AX–AEX2) and Alkalin Earth Halide – Rare Earth Halide (AEX2–REX3) were systematically studied. Candidates for new scintillation materials in the three systems were selected based on a set of selection rules. A total of 42 Ce3+ or Eu2+ activated binary halide scintillation material candidates were synthesized and characterized. Among all synthesized candidates, 10 - 15 candidate materials were found to be highly promising in terms of high scintillation light output, fast scintillation decay or desirable emission wavelength.
Three most promising candidates, Cs3EuI5, CsGd2Cl7:Ce3+ and CsSrI3:Eu2+ were selected for single crystal growth and further evaluation. Technologies for single crystal growth of hygroscopic halide scintillation materials were developed. Detailed design of experimental apparatuses was discussed. Single crystals were successfully grown via Bridgman or Vertical Gradient Freeze techniques. Study on optical and scintillation properties was performed. Possibility of using CsGd2Cl7:Ce3+ as a neutron detector was confirmed.
CsSrI3:Eu2+ shows extraordinary scintillation light output (73,000 ph/MeV), excellent energy resolution (3.9%) and ease for crystal growth. A scaled-up crystal growth was carried out. A bulk crystal of 1” diameter CsSrI3:Eu2+ was successfully grown. Energy level structure and charge carrier traps in CsSrI3:Eu2+ were investigated. Potential of CsSrI3:Eu2+ in various radiation detection applications were evaluated.
|
53 |
Thin Film Combinatorial Synthesis of Advanced Scintillation MaterialsPeak, Jonathan Daniel 01 December 2010 (has links)
The development and application of a combinatorial sputtering thin film technique to screen potential scintillation material systems was investigated. The technique was first benchmarked by exploring the binary lutetium oxide-silicon oxide material system, which successfully identified the luminescence phases of the system, Lu2SiO5 (LSO) and Lu2Si2O7 (LPS). The second application was to optimize the activator concentration in cerium doped LSO. The successfully optimized cerium concentration in the thin film LSO of 0.34 atomic percent was much greater than the standard cerium concentration in single crystal LSO. This lead to an intensive study based on temperature dependent steady-state and lifetime photoluminescence spectroscopy to understand the different concentration quenching mechanisms involved in the bulk single crystal versus the thin film LSO. The results were used to develop configuration coordinate models which were employed to explain the observed concentration dependent behavior. The nature of single crystal LSO:Ce concentration quenching was determined to be due to radiative energy transfer, and ultimately self-absorption. For the thin films it was found self-absorption was not a dominant factor due to the thin dimension of the film and also its nano-crystalline nature. Instead, the photoluminescence excitation and emission spectra as a function of concentration demonstrated the concentration quenching behavior was due to an increase in defect-mediated non-radiative transitions with increasing cerium. The final application of the thin film screening technique was the exploration of the ternary Lu2O3-SiO2-Al2O3 material system doped with cerium. It was found that the presence of aluminum and silicon hindered LSO and Al5Lu3O12 (LuAG) emission, respectively. However, the presence of aluminum was found to increase LPS emission intensity. The percent of aluminum in the LPS phase was estimated at 2.5 atomic percent.
|
54 |
The Impact of Quantum Size Effects on Thermoelectric Performance in Semiconductor NanostructuresKommini, Adithya 24 March 2017 (has links)
An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor-based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. This thesis studies the two well-known approaches: confinement and energy filtering, and implements improvements to achieve higher thermoelectric performance. The effect of confinement is evaluated using a 2D material with a gate and utilizing the features in the density of states. In addition to that, a novel controlled scattering approach is taken to enhance the device thermoelectric properties. The shift in the onset of scattering due to controlled scattering with respect to sharp features in the density of states creates a window shape for transport integral. Along with the controlled scattering, an effective utilization of Fermi window can provide a considerable enhancement in thermoelectric performance. The conclusion from the results helps in selection of materials to achieve such enhanced thermoelectric performance. In addition to that, the electron filtering approach is studied using the Wigner approach for treating the carrier-potential interactions, coupled with Boltzmann transport equation which is solved using Rode's iterative method, especially in periodic potential structures. This study shows the effect of rapid potential variations in materials as seen in superlattices and the parameters that have significant contribution towards the thermoelectric performance. Parameters such as period length, height and smoothness of such periodic potentials are studied and their effect on thermoelectric performance is discussed. A combination of the above two methods can help in understanding the effect of confinement and key requirements in designing a nanostructured thermoelectric device that has a enhanced performance.
|
55 |
HIGH PERFORMANCE SILVER DIFFUSIVE MEMRISTORS FOR FUTURE COMPUTINGMidya, Rivu 24 March 2017 (has links)
Sneak path current is a significant remaining obstacle to the utilization of large crossbar arrays for non-volatile memories and other applications of memristors. A two-terminal selector device with an extremely large current-voltage nonlinearity and low leakage current could solve this problem. We present here a Ag/oxide-based threshold switching (TS) device with attractive features such as high current-voltage nonlinearity (~1010), steep turn-on slope (less than 1 mV/dec), low OFF-state leakage current (~10-14 A), fast turn ON/OFF speeds (<75/250 ns), and good endurance (>108 cycles). The feasibility of using this selector with a typical memristor has been demonstrated by physically integrating them into a multilayered 1S1R cell. Structural analysis of the nanoscale crosspoint device suggests that elongation of a Ag nanoparticle under voltage bias followed by spontaneous reformation of a more spherical shape after power off is responsible for the observed threshold switching of the device. Such mechanism has been quantitatively verified by the Ag nanoparticle dynamics simulation based on thermal diffusion assisted by bipolar electrode effect and interfacial energy minimization.
|
56 |
Investigation of Degradation Effects Due to Gate Stress in GaN-on-Si High Electron Mobility Transistors Through Analysis of Low Frequency NoiseMasuda, Michael Curtis Meyer 01 March 2014 (has links)
Gallium Nitride (GaN) high electron mobility transistors (HEMT) have superior performance characteristics compared to Silicon (Si) and Gallium Arsenide (GaAs) based transistors. GaN is a wide bandgap semiconductor which allows it to operate at higher breakdown voltages and power. Unlike traditional semiconductor devices, the GaN HEMT channel region is undoped and relies on the piezoelectric effect created at the GaN and Aluminum Gallium Nitride (AlGaN) heterojunction to create a conduction channel in the form of a quantum well known as the two dimensional electron gas (2DEG). Because the GaN HEMTs are undoped, these devices have higher electron mobility crucial for high frequency operation. However, over time and use these devices degrade in a manner that is not well understood. This research utilizes low frequency noise (LFN) as a method for analyzing changes and degradation mechanisms in GaN-on-Si devices due to gate stress.
LFN is a useful tool for probing different regions of the device that cannot be measured through direct means. LFN generation in GaN HEMTs is based on the carrier fluctuation theory of 1/f noise generation which states fluctuations in the number of charge carriers results in conductance fluctuations that produce a Lorentzian noise spectrum. The summing Lorentzian noise spectra from multiple traps leads to 1/f and random telegraph signal (RTS) noise. The primary cause of carrier fluctuations are electron traps near the 2DEG and in the AlGaN bulk. These traps occur naturally due to dislocations and impurities in the manufacturing process, but new traps can be generated by the inverse-piezoelectric effect during gate stress.
This thesis introduces noise and presents a circuit to bias the devices and measure gate and drain LFN simultaneously. Three measurements are performed before and after gate DC stress at three different temperatures: DC characterization, capacitance-voltage (C-V) measurements, and LFN measurements. The DC characteristics show an increase in gate leakage after stress caused by an increase in traps after degradation consistent with trap assisted tunneling. However, the leakage current on the drain and source side differ before and after stress leading to the conclusion that the source side of the gate is more sensitive to gate stress. Gate leakage current on the drain side is also sensitive to temperature due to thermionic trap assisted tunneling. Hooge parameter calculations agree with previous research. The LFN results show an increase in gate and drain noise power, SIg(f) and SId(f), in accordance with increased gate leakage current under cutoff bias. RTS noise is also observed to increase in frequency with increased temperature. Activation energies for RTS noise are extracted and qualitatively linked to trap depth based on the McWhorter trap model.
|
57 |
Characterization of a Viscoelastic Response from Thin Metal Films Deposited on Silicon for Microsystem ApplicationsMeredith, Steven L 01 January 2009 (has links) (PDF)
Understanding the mechanisms that control the mechanical behavior of microscale actuators is necessary to design an actuator that responds to an applied actuation force with the desired behavior. Micro actuators which employ a diaphragm supported by torsional hinges which deform during actuation are used in many applications where device stability and reliability are critical. The material response to the stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. A fully recoverable non-linear viscoelastic response has been observed in electrostatically driven micro actuators employing torsional hinges of silicon covered with thin metal films. The viscoelastic response occurs over a time period of 50 minutes at an operating temperature of 35°C. This viscoelastic phenomenon is similar to that reported in articles addressing anelastic behavior associated with viscous grain boundary slippage and dislocation bowing. In order to investigate this viscoelastic response as a function of metal film composition and thickness, bi-layer torsional hinge actuators consisting of Si with a deposited metal layer were designed to exhibit similar stress levels as the electrostatically driven micro actuators. The test devices were fabricated using common semiconductor fabrication techniques. The actuators were micromachined by deep etching 100mm diameter, 425µm thick, double side polished, single crystal (100) wafers to create a 4.5µm thick device layer. Subsequent etching of the device layer released the fixed-fixed torsional hinge test actuators. Physical vapor depositions of Au, Al and Al-Ti in two different thicknesses (100nm, and 150nm) were deposited in order to investigate the impact of metal film thickness and composition on the viscoelastic response. Grain sizes of the deposited films were estimated using backscattered electron images. Rotational actuation of the test actuators was achieved by using a modified Ambios XP-1 surface profiler that applies a constant force of 0.28mN while measuring the displacement of the actuator with respect to time. The viscoelastic response was observed in the test devices with Au and Al thin films indicating that this phenomenon is attributable to the stresses induced on the torsional hinge. Results indicate that the viscoelastic response was not observed in AlTi thin films consisting of 0.3at% titanium. Two theoretical models are presented that discuss the mechanism associated with the viscoelastic response as well as a method for inhibiting these mechanisms by the addition of an alloying element to form a second phase precipitate.
|
58 |
The Fabrication & Characterization of an Electrokinetic Microfluidic Pump from SU-8, a Negative Epoxy-Based PhotoresistAnderson, Nash 01 June 2013 (has links) (PDF)
Microfluidics refers to manipulation, precise control, and behavior of fluids at the micro and nanoliter scales. It has entered the realm of science as a way to precisely measure or mix small amounts of fluid to perform highly controlled reactions. Glass and polydimethylsiloxane (PDMS) are common materials used to create microfluidic devices; however, glass is difficult to process and PDMS is relatively hydrophobic. In this study, SU-8, an epoxy based (negative) photoresist was used to create various electrokinetic microfluidic chips. SU-8 is commonly used in microelectromechanical design. Spin coating of various SU-8 formulations allows for 1 μm to 100 μm thick layers with aspect ratios reportedly as high as 50:1. Case studies were performed to understand the curing/crosslinking process of SU-8 by differential scanning calorimetry. Supplier (MicroChem) recommended parameters were then altered to allow for adequate development of microfluidic channels, while maintaining enough molecular mobility to subsequently bond the SU-8 to a secondary substrate. Three SU-8 layers were used to create fully (SU-8) enclosed microfluidic channels. An (1) SU-8 2050 fully cured base layer was used as a platform on silicon to build from, (2) an SU-8 2050 partially cured layer for developing microfluidic channels , and (3) an SU-8 2007 uncured layer for bonding a secondary substrate to enclose the microfluidic channels. Bond quality was verified by optical and scanning electron microscopy, which resulted in a nearly 100% bond with little to no reflow of SU-8 into channels. Working pressures (ΔP across the capillary) of 15.57 lb/in2 (max detection) were obtained with no fluid leaks. Electroosmotic flow and steaming potential measurements failed. Electrophoretic behavior of glass particles was observed and particle velocities were compared by the application of 200 volts and 300 volts, across a channel length of 2 cm. Particle velocities obtained ranged from 100 μm/s to 1500 μm/s.
|
59 |
The Design and Fabrication of a Microfluidic Reactor for Synthesis of Cadmium Selenide Quantum Dots Using Silicon and Glass SubstratesGonsalves, Peter Robert 01 February 2012 (has links) (PDF)
A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of a silicon wafer and Pyrex glass. Microfabrication techniques were used to etch channels into the silicon wafer. Holes were wet-drilled into the Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was anodically bonded to the etched silicon wafer to enclose the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. A syringe containing a room temperature CdSe solution was interfaced to the microfluidic reactor by using Poly (dimethylsiloxane) (PDMS) as an interface. The reactor was placed on a hot plate at 225oC, creating thermodynamic conditions for the QD chemical reaction to occur within the etched channels. Tygon® tubing transported solutions in and out of the microfluidic reactor. The CdSe solution was injected into the reactor by a syringe pump at an injection rate of 5 mL/hr, with a channel length of 2.5 cm. While in the microfluidic channels, QD residence time of approximately 30 seconds was sufficient enough for nucleation and growth of QDs to occur. The QD size was characterized by fluorescence full-width-half-maximum (FWHM), which is directly proportional to size distribution. The FWHM of the QDs synthesized was 38 nm, with a peak wavelength of 492 nm. By controlling combinations of pump rate and channel length, a range of QD sizes was able to be consistently synthesized through the microfluidic reactor with significant repeatability and reproducibility.
|
60 |
Effect of Surfactant Architecture on Conformational Transitions of Conjugated PolyelectrolytesBraggin, Greg A. 01 June 2015 (has links) (PDF)
Water soluble conjugated polyelectrolytes (CPEs), which fall under the category of conductive polymers, possess numerous advantages over other conductive materials for the fabrication of electronic devices. Namely, the processing of water soluble conjugated polyelectrolytes into thin film electronic devices is much less costly as compared to the processing of inorganic materials. Moreover, the handling of conjugated polyelectrolytes can be performed in a much more environmentally friendly manner than in the processing of other conjugated polymers because conjugated polyelectrolytes are water soluble, whereas other polymers will only dissolve in toxic organic solvents. The processing of electronic devices containing inorganic constituents such as copper indium gallium selenide (CIGS), is much more expensive and poses much greater environmental risks because toxic metals may be released into landfills or waterways upon cell disposal.75 Because conjugated polyelectrolytes enjoy an assortment of advantages over other materials for the manufacturing of thin film electronic devices, there is globally vested interest in the researching of their properties. Despite the fact that CPEs can serve as efficient electron transport mediums, devices such as organic solar cells cannot realize their highest efficiencies unless the morphology of CPEs is precisely controlled. Charged surfactants can electrostatically and ionically interact with CPEs, and when introduced in specific concentrations, molar ratios, and temperature ranges, will aid in a ‘coil to rod’ transition of the CPE, wherein polymer chains undergo intramolecular transitions to obtain rigid-rod morphologies. The kinetics and thermodynamics of the ‘coil to rod’ transition are heavily dependent upon the type(s) of charged surfactant complexed with the CPE (i.e. on the surfactant architecture). By performing UV/Vis Spectroscopy and Fluorometry on dilute polymer/surfactant solutions, Polarized Optical Microscopy (POM) and Small Angle X-Ray Scattering (SAXS) on high concentration polymer/surfactant solutions, and Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) on solid-state polymer/surfactant samples, the role of various surfactant architectures on the kinetics and thermodynamics of the ‘coil to rod’ transition was studied. The liquid crystalline physical properties and the extent of solid state crystallinity were also investigated. Through an analysis of the data obtained from these various techniques, it was found that the ‘coil to rod’ transition is progressively favored when the alkyl chain length of a single tailed surfactant is sequentially increased, and that as the concentration of double-tailed surfactant increases, the ‘coil to rod’ transition is negated.
|
Page generated in 0.0959 seconds