• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 4
  • 2
  • 1
  • Tagged with
  • 114
  • 114
  • 33
  • 26
  • 20
  • 19
  • 18
  • 15
  • 14
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Image Charge Detection for Deterministic Ion Implantation

Räcke, Paul 31 March 2020 (has links)
Image charge detection is presented as a possible candidate to realise deterministic ion implantation. The deterministic placement of single impurities in solid substrates will enable a variety of novel applications, using their quantum mechanical properties for sensors or qubit registers. In this work, experimental techniques are used together with theoretical calculations to develop, characterise and optimise the detection of charged objects in a single pass through an image charge detector. In the main experimental part, ion bunches are employed as a model system for highly charged ions in proof-of-principle measurements with detector prototypes built in our labs. Image charge signals are characterised in the time and frequency domain. Using a statistical measurement and data analysis protocol, the noise and signal probability density functions are determined to calculate error and detection rates. It was found that even at an extremely low signal-to-noise ratio of 2, error rates can be suppressed effectively for high fidelity implantation. Aiming to improve the sensitivity, the maximum possible signal-to-noise ratio is calculated and discussed in dependence on the design parameters of an optimised image charge detector and the kinetic ion parameters. Lastly, a new ion implantation set-up combining focused ion beam technology with a source able to produce highly charged ions is introduced.
112

Organic p-i-n Homojunctions: Fundamentals and Applications

Harada, Kentaro 22 July 2008 (has links)
In this thesis, we study the physical properties of doped organic semiconductors. We first demonstrate the impact of doping on C60 films. In contrast to previous reports for organic thin films, the n-doped C60 films show a decrease of mobility with increasing doping levels; i.e., they follow the well-known Matthiessen rule which is generally observed in inorganic semiconductors. Using further strong organic donors and acceptors, we realize p-i-n homojunctions of several organic matrices: zinc-phthalocyanine, pentacene, and an iridium-complex TER004. We observe stable and reproducible diode characteristics, which can be described by the standard Shockley theory with an exception concerning the temperature dependence of the diode parameters. The current-voltage characteristics of the pentacene homojunctions under illuminated conditions indicate that the thermodynamic limitation of the open-circuit voltage is determined by the built-in voltage of 1.65 V, and that the recombination process is influenced by the distinct charge transport properties of electrons and holes. The very high built-in voltage of 2.2 V in the TER004 homojunction allows a red phosphorescent homo-OLED, which shows visible emission around 650 nm with low operation voltage. We examine the charge balance status in the homojunction structure, revealing that TER004 has superior electron transport properties.
113

Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+ / Spectroscopic studies and doping of ZnS semicondutor nanocrystals with ions Co2+ and Cu2+

Xavier, Paulo Adriano 10 September 2013 (has links)
This work reports the study of semiconductor nanocrystals, also known as quantum dots, focusing specifically on zinc sulfide (ZnS). Two different capping agents were used (glutathione and N-acetyl-L-cysteine) for the preparation of ZnS nanocrystals via aqueous route. The study aimed specifically at evaluating the efficacy of the capping agents in the stabilization of semiconductor nanocrystal suspensions towards coalescence as well as in controlling nanocrystal size and optical properties. In addition the effect of doping the ZnS nanocrystals with transition metal ions (Cu2+ and Co2+) on the photoluminescence properties has also been studied. Finally the possibility of energy transfer between the semiconductor nanocrystals and the safranine dye was also evaluated. Spherical-shaped glutathione and N-acetyl-L-cysteine-capped ZnS nanocrystal were obtained with diameters below 5 nm free from coalescence, showing that both iv capping agents were efficient as stabilizers. Both capping agents lead to the formation of ZnS nancrystals with blue fluorescence, typical of the involvement of surface defect states of ZnS. However, samples prepared with glutathione exhibited higher fluorescence intensities than those obtained with N-acetyl-L-cysteine. Upon doping glutathione-capped ZnS nanocrystals with both copper and cobalt the fluorescence intensities decreased gradually following the increase in nominal concentration of dopants, suggesting that cobalt ions played a similar role as copper. Considering both the effect on the intensities and the absence of d-d metal transitions this study suggests that doping reduced the concentration of cation vacancies as well as the involvement of at least one cobalt state in the transition processes. Changes in emission wavelength with different dopant concentrations were not observed probably owing to lack of influence on the nanocrystal size. Finally the preliminary study of fluorescence quenching of semiconductor nanocrystals by safranine dye indicated that significantly low concentrations were able to quench the emissions. Different components of the emission band were distinctly affected. Data analysis by Stern-Volmer plots suggested the occurrence of more than one transfer processes (energy and/or electron transfer). This study will be refined in future works. / No presente trabalho foram estudados nanocristais semicondutores, tambem conhecidos como pontos quanticos ou quantum dots, selecionando-se especificamente o sulfeto de zinco (ZnS). Foram utilizados ois diferentes agentes estabilizantes (glutationa e N-acetil-L-cisteina) na obtencao de nanocristais de ZnS por via aquosa. Buscou-se avaliar, especificamente, a eficiencia dos agentes tiois na estabilizacao das suspensoes de nanocristais frente a agregacao, no controle e distribuicao de tamanhos das particulas, bem como nas propriedades opticas. Estudou-se, alem disto, o efeito da dopagem com ions de metais de transicao (Cu2+ e Co2+) nas propriedades de fluorescencia. Por fim, foi avaliada a possibilidade de transferencia de energia entre os nanocristais semicondutores dopados e o corante safranina. Os nanocristais semicondutores de ZnS estabilizados por glutationa e por N-acetil-L-cisteina foram obtidos com tamanhos abaixo de 5 nm, formas aproximadamente esfericas e livres de agregacao, evidenciando que ambos agentes ii estabilizantes foram eficientes. Ambos agentes estabilizantes levaram a formacao de nanocristais com emissoes na regiao do azul, caracteristicas do envolvimento de estados de defeito de superficie do ZnS. No entanto, as amostras preparadas com glutationa apresentaram maiores intensidades de fluorescencia, quando comparadas com aquelas preparadas com N-acetil-L-cisteina. A dopagem dos nanocristais semicondutores ZnS/Glu com ions cobre e cobalto teve um efeito de diminuir as intensidades de fluorescencia dependente da concentracao nominal dos dopantes em ambos os casos, sugerindo que o cobalto atua de modo analogo ao cobre. Considerando-se tanto o efeito sobre as intensidades de emissao do ZnS quanto a ausencia de transicoes d-d do metal, o estudo sugeriu que a dopagem reduz a concentracao de vacancias de cations, bem como o envolvimento de pelo menos um dos estados eletronicos do cobalto nos processos de transicao. Nao se observou variacoes nos comprimentos de onda para diferentes concentracoes dos dopantes, provavelmente pela ausencia de interferencia no tamanho dos nanocristais semicondutores formados. Por fim, o estudo preliminar da supressao de fluorescencia dos nanocristais semicondutores pelo efeito de diferentes concentracoes do corante safranina mostrou que concentracoes significativamente baixas do corante foram suficientes para diminuir a intensidade de fluorescencia. Diferentes componentes das bandas de emissao dos nanocristais semicondutores foram influenciados de modo distinto. A analise dos dados pelos graficos de Stern-Volmer sugeriu a ocorrencia de mais de um processo de transferencia (energia e/ou eletrons). Este estudo sera aprofundado nos trabalhos futuros.
114

Formation of Supersaturated Alloys by Ion Implantation and Pulsed-Laser Annealing

Wilson, Syd Robert 08 1900 (has links)
Supersaturated substitutional alloys formed by ion implantation and rapid liquid-phase epitaxial regrowth induced by pulsed-laser annealing have been studied using Rutherford-backscattering and ion-channeling analysis. A series of impurities (As, Sb, Bi, Ga, In, Fe, Sn, Cu) have been implanted into single-crystal (001) orientation silicon at doses ranging from 1 x 10^15/cm2 to 1 x 10^17/cm2. The samples were subsequently annealed with a Ω-switched ruby laser (energy density ~1.5 J/cm2, pulse duration 15 x 10-9 sec). Ion-channeling analysis shows that laser annealing incorporates the Group III (Ga, In) and Group V (As, Sb, Bi) impurities into substitutional lattice sites at concentrations far in excess of the equilibrium solid solubility. Channeling measurements indicate the silicon crystal is essentially defect free after laser annealing. The maximum Group III and Group V dopant concentrations that can be incorporated into substitutional lattice sites are determined for the present laser-annealing conditions. Dopant profiles have been measured before and after annealing using Rutherford backscattering. These experimental profiles are compared to theoretical model calculations which incorporate both dopant diffusion in liquid silicon and a distribution coefficient (k') from the liquid. It is seen that a distribution coefficient (k') far greater than the equilibrium value (k0) is required for the calculation to fit the experimental data. In the cases of Fe, Zn, and Cu, laser annealing causes the impurities to segregate toward the surface. After annealing, none of these impurities are observed to be substitutional in detectable concentrations. The systematics of these alloys systems are discussed.

Page generated in 0.056 seconds