Spelling suggestions: "subject:"semiconductors - 0ptical properties."" "subject:"semiconductors - aoptical properties.""
41 |
Measurement and application of optical nonlinearities in indium phosphide, cadmium mercury telluride and photonic crystal fibresSloanes, Trefor J. January 2009 (has links)
The two-photon absorption (TPA) coefficient is measured in indium phosphide (InP) using femtosecond pulses to be 45cm/GW at 1.32μm. Nanosecond pulses are subsequently used to find the free-carrier refractive index cross-section, σ_r, and the free-carrier absorption coefficient, σ_fca. The quantity βσ_r is measured to be -113x10⁻²ºcm⁴/GW at 1.064μm and -84x10⁻²ºcm⁴/GW at 1.534μm. At 1.064μm, with β assumed to be 22cm/GW, the value suggested by theory, σ_r is -5.1x10⁻²ºcm³. Similarly, at 1.534μm, assuming β to be 20cm/GW gives a σ_r value of -4.1x10⁻²ºcm³. Due to refraction affecting the measurements of σ_fca, only an upper limit of 1x10⁻¹⁵cm² can be put on its value. The free-carrier experiments are repeated on two samples of cadmium mercury telluride (CMT) having bandgaps of 0.89eV and 0.82eV. For the first sample, β_σr is measured to be -148x10⁻²ºcm⁴/GW. Assuming β to be 89cm/GW gives a σ_r value of -1.7x10⁻²ºcm³ whilst σ_fca is found to be at most 3x10⁻¹⁵cm². Significant linear absorption occurs in the second sample which generates a large free-carrier population. It is shown that this significantly enhances the nonlinearities. Finally, the results of the work are tested by modelling a nonlinear transmission experiment, and the results found in this work give a closer fit to experimental results than the result of theory. Four-wave mixing (FWM) in a photonic crystal fibre is exploited to create a high output power optical parametric amplifier (OPA). To optimise the OPA conversion efficiency, the fibre length has to be increased to 150m, well beyond the walk-off distance between the pump and signal/idler. In this regime, the Raman process can take over from the FWM process and lead to supercontinuum generation. The OPA exhibits up to 40% conversion efficiency, with the idler (0.9μm) and the signal (1.3μm) having a combined output power of over 1.5W.
|
42 |
Optical Nonlinearities in Semiconductors for LimitingWu, Yuan-Yen 05 1900 (has links)
I have conducted detailed experimental and theoretical studies of the nonlinear optical properties of semiconductor materials useful for optical limiting. I have constructed optical limiters utilizing two-photon absorption along with photogenerated carrier defocusing as well as the bound electronic nonlinearity using the semiconducting material ZnSe. I have optimized the focusing geometry to achieve a large dynamic range while maintaining a low limiting energy for the device. The ZnSe monolithic optical limiter has achieved a limiting energy as low as 13 nJ (corresponding to 300W peak power) and a dynamic range as large as 105 at 532 nm using psec pulses. Theoretical analysis showed that the ZnSe device has a broad-band response covering the wavelength range from 550 nm to 800 nm. Moreover, I found that existing theoretical models (e.g. the Auston model and the band-resonant model using Boltzmann statistics) adequately describe the photo-generated carriers refractive nonlinearity in ZnSe.
Material nonlinear optical parameters, such as the two-photon absorption coefficient β_2=5.5cm/GW, the refraction per unit carrier density σ_n=-0.8∗10^-21cm^3 and the bound electronic refraction n_2=-4∗10^-11esu, have been measured via time-integrated beam distortion experiments in the near field. A numerical code has been written to simulate the beam distortion in order to extract the previously mentioned material parameters. In addition, I have performed time-resolved distortion measurements that provide an intuitive picture of the carrier generation process via two-photon absorption.
I also characterized the optical nonlinearities in a ZnSe Fabry-Perot thin film structure (an interference filter). I concluded that the nonlinear absorption alone in the thin film is insufficient to build an effective optical limiter, as it did not show a net change in refraction using psec pulses. An innovative numerical program was developed to simulate the nonlinear beam propagation inside the Fabry-Perot structure. For comparison, pump-probe experiments were performed using both thin film and bulk ZnSe. The results showed relatively long carrier lifetimes (>300 psec) in both samples. A numerical code was written to fit the pump-probe experimental results. The fitting yielded that carrier lifetimes (recombination through traps), radiative decay rate, two-photon absorption coefficient as well as the free carrier absorption coefficient for ZnSe bulk material.
|
43 |
Nonlinear Absorption Techniques and Measurements in SemiconductorsWoodall, Milton Andrew 08 1900 (has links)
We have conducted a detailed experimental and theoretical study of nonlinear absorption in semiconductors. Experimental measurements were made on a variety of materials at wavelengths of 1.06 and 0.53 microns using a picosecond Nd:YAG laser. Both two- and three-photon processes were investigated. Values of nonlinear absorption coefficients extracted from these measurements show excellent agreement with recent theory and scaling rules.
Our theoretical investigation has been carried out for two-, three-,and n-photon absorption, for both continuous and pulsed sources. Expressions are obtained for the transmission of the sample in terms of the incident irradiance for each case. The physical interpretation of these results is discussed.
We have also considered the effects of the photogenerated carriers on the measurements. Equations are developed that include linear absorption by these carriers. We have observed severe distortions on the transmitted beam, caused by changes in the refractive index of the material, due to the presence of these carriers. We present a model that accurately describes these effects in terms of the photogenerated
carrier density.
We have developed several novel techniques for monitoring nonlinear absorption. In particular, we have adapted the photoacoustic technique to the measurement of nonlinear absorption in semiconductors. We have also developed a technique employing irradiance modulation to greatly enhance the sensitivity to nonlinear processes and simultaneously discriminate against linear background signals. A related technique has been used to observe coherent mixing effects in semiconductors with cw, modelocked dye lasers.
|
44 |
Photoluminescent properties of annealed ZnCdSe epitaxial layers on InP substrates =: 磷化銦上鋅鎘硒外延層退火處理後的光致發光性質. / 磷化銦上鋅鎘硒外延層退火處理後的光致發光性質 / Photoluminescent properties of annealed ZnCdSe epitaxial layers on InP substrates =: Lin hua yin shang xin ke xi wai yan ceng tui huo chu li hou de guang zhi fa guang xing zhi. / Lin hua yin shang xin ke xi wai yan ceng tui huo chu li hou de guang zhi fa guang xing zhiJanuary 1998 (has links)
by Wong Kin Sang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 61-62). / Text in English; abstract also in Chinese. / by Wong Kin Sang. / Table of contents --- p.I / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Interest in ZnxCd1-x Se/InP --- p.1 / Chapter 1.2 --- Conditions of thermal annealing --- p.2 / Chapter 1.3 --- Advantages of using photoluminescence (PL) --- p.3 / Chapter 1.4 --- Our work --- p.4 / Chapter Chapter 2 --- Experimental setup and procedures / Chapter 2.1 --- PL measurements --- p.6 / Chapter 2.1.1 --- Setup --- p.6 / Chapter 2.1.2 --- Types of PL measurements --- p.6 / Chapter 2.2 --- Annealing experiments --- p.8 / Chapter 2.2.1 --- Setup --- p.8 / Chapter 2.2.2 --- Types of annealing --- p.10 / Chapter 2.2.3 --- Procedures --- p.11 / Chapter Chapter 3 --- Results and discussions / Chapter 3.1 --- Room temperature PL studies of ZnxCd1-xSe/InP --- p.12 / Chapter 3.1.1 --- As-grown ZnxCd1-x Se/InP --- p.12 / Chapter 3.1.1.1 --- Peak energy vs concentration --- p.12 / Chapter 3.1.2 --- Annealing studies --- p.15 / Chapter 3.1.2.1 --- Isothermal annealing --- p.15 / Chapter 3.1.2.2 --- Isochronal annealing --- p.20 / Chapter 3.2 --- PL studies of ZnxCd1-xSe/InP at 10 K temperature --- p.22 / Chapter 3.2.1 --- As-grown ZnxCd1-xSe/InP --- p.22 / Chapter 3.2.1.1 --- Excitation power density dependence --- p.22 / Chapter 3.2.1.2 --- Peak energy vs Zn concentration --- p.26 / Chapter 3.2.2 --- Annealing studies --- p.29 / Chapter 3.2.2.1 --- Isothermal annealing --- p.29 / Chapter 3.2.2.2 --- Isochronal annealing --- p.33 / Chapter 3.3 --- Temperature dependent PL studies of ZnxCd1-xSe/InP --- p.37 / Chapter 3.3.1 --- As-grown ZnxCd1-xSe/InP --- p.37 / Chapter 3.3.1.1 --- Peak energy vs temperature --- p.37 / Chapter 3.3.1.2 --- Peak width vs temperature --- p.46 / Chapter 3.3.2 --- Annealing studies --- p.50 / Chapter 3.3.1.1 --- Peak energy vs temperature --- p.50 / Chapter 3.3.1.2 --- Peak width vs temperature --- p.55 / Chapter Chapter 4 --- Conclusions --- p.59 / References --- p.61
|
45 |
Photoluminescent properties of GaAs₁₋xNx epitaxial layers on GaAs substrates =: 砷鎵化上砷氮化鎵外延層的光致發光性質. / 砷鎵化上砷氮化鎵外延層的光致發光性質 / Photoluminescent properties of GaAs₁₋xNx epitaxial layers on GaAs substrates =: Shen jia hua shang shen dan hua jia wai yan ceng de guang zhi fa guang xing zhi. / Shen jia hua shang shen dan hua jia wai yan ceng de guang zhi fa guang xing zhiJanuary 2001 (has links)
by Lam Siu Dan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 65-67). / Text in English; abstracts in English and Chinese. / by Lam Siu Dan. / Table of contents --- p.I / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Interest in GaAs1-xNx/GaAs alloy --- p.1 / Chapter 1.2 --- Interest in growing GaAs1-xNx/GaAs using different carrier gases --- p.4 / Chapter 1.3 --- Theoretical calculation of the band gap energy of GaAs1-xNx alloy --- p.4 / Chapter 1.4 --- Advantages of using photoluminescence (PL) --- p.7 / Chapter 1.5 --- Our work --- p.9 / Chapter Chapter 2 --- Experimental setup and procedures / Chapter 2.1 --- Growth conditions of GaAs1-xNx on (001) GaAs --- p.10 / Chapter 2.2 --- X-ray diffraction / Chapter 2.2.1 --- Setup --- p.12 / Chapter 2.2.2 --- Types of X-ray measurements --- p.12 / Chapter 2.3 --- PL measurements / Chapter 2.3.1 --- Setup --- p.14 / Chapter 2.3.2 --- Types of PL measurement --- p.16 / Chapter Chapter 3 --- Results and discussions / Chapter 3.1 --- X-ray diffraction of GaAs1-xNx/GaAs / Chapter 3.1.1 --- GaAs1-xNx/GaAs grown using H2 as carrier gas --- p.17 / Chapter 3.1.2 --- GaAs1-xNx/GaAs grown using N2 as carrier gas --- p.28 / Chapter 3.1.3 --- Peak widths of the X-ray rocking curves of GaAs1-xNx/GaAs --- p.30 / Chapter 3.2 --- Room temperature (RT) and 10K PL of GaAs1-xNx/GaAs / Chapter 3.2.1 --- The energy of the NBE peak of GaAs1-xNx/GaAs --- p.32 / Chapter 3.2.2 --- The width of the NBE peak of GaAs1-xNx/GaAs --- p.44 / Chapter 3.3 --- Excitation power density (EPD) dependent PL studies of GaAs1-xNx/GaAs / Chapter 3.3.1 --- The energy of the NBE peak of GaAs1-xNx/GaAs --- p.49 / Chapter 3.3.2 --- The width of the NBE peak of GaAs1-xNx/GaAs --- p.55 / Chapter 3.4 --- Temperature dependent PL studies of GaAs1-xNx/GaAs --- p.57 / Chapter Chapter 4 --- Conclusions --- p.62 / References --- p.63
|
46 |
Generation of squeezed light in semiconductorsSchucan, Gian-Mattia January 1999 (has links)
We present experimental studies based on all three methods by which the generation of squeezed light in semiconductors has thus far been demonstrated experimentally: Fourwave mixing, multi-photon absorption and direct generation at the source. Four-wave mixing was used to generate femtosecond-pulsed quadrature squeezed light by cross-phase modulation in single-crystal hexagonal CdSe at wavelengths between 1.42 and 1.55 μm. We measured 0.4 dB squeezing (1.1 dB is inferred at the crystal) using 100 fs pulses. The wavelength and the intensity dependence, as well as variations in the local oscillator configuration were investigated. At higher intensities squeezing was shown to deteriorate owing to competing nonlinear processes. We also characterised the nonlinear optical properties of CdSe in this wavelengths range using an interferometric autocorrelator. In addition, we studied the feasibility of extending this technique to AlGaAs waveguides. The key problems are addressed and solutions are proposed. In a different experiment we used an AlGaAs waveguide to demonstrate for the first time photon-number squeezing by multi-photon absorption. By tuning the pump energy through the half bandgap energy we could effectively select two- or three-photon absorption as the dominant mechanism. Squeezing by these two mechanisms could be clearly distinguished and was found to be in good agreement with longstanding theoretical predictions. We also established the generality of the effect, by demonstrating the same mechanism in organic semiconductors, where it led to the first ever observation of squeezed light in an organic material. Finally, we present our measurements of photon-number squeezing in high-efficiency double heterojunction AlGaAs light-emitting diodes. We measured squeezing of up to 2.0 dB. In addition, we observed quantum noise correlations when several of these devices were connected in series.
|
47 |
Foto-degradering van amorfe silikon dun lagiesEsterhuyse, Coreen 02 April 2014 (has links)
M.Sc. (Physics) / Amorphous silicon is one of the most promising materials for large area solar cells for terestrial photovoltaic applications. Unfortunately these cells suffer from two serious problems: the efficiencies drop when laboratory processes are scaled up and the cells degrade after some exposure to sunlight. The exact causes of these two problems are still unknown. In this project some aspects of the latter problem were investigated. The photo-degradation was investigated by illuminating films of a-Si:H with simulated sunlight for different periods of time and then thermally annealing them. The change in the optical properties were investigated with the aid of optical transmission spectroscopy. The films were also characterized by Fourier Transform Infra-Red (FTIR) spectroscopy. The change in the electrical properties of the intrinsic films was determined as function of temperature and total photon flux. No change in the optical properties could be detected. The illumination had-no effect on the FTIR measurements. It seems as if the hydrogen is not involved in the microscopic processes leading to the Staebler-Wronski Effect (SWE). The effect of the photo-degradation manifests itself in a drop in the the dark conductivity and photoconductivity over the total temperature range that was investigated. The observed phenomena are explained in terms of photo-induced deep levels in the gap. The Fermi level shifts to the middle of the gap due to these defect states, causing a drop in the free carrier concentration and conductivity. The measurements of photoconductivity as function of photon energy show that these defect levels increase the absorption coefficient in the long wavelength region, but they also decrease the lifetime of the photo-generated carriers. The photo-induced defects were investigated with the CPM-technique. It was found that the light introduced defects deep in the band gap. The concentration of the defects increases with illumination, but saturates after about 24 hours of illumination. The defects could be annealed almost completely. The microscopic processes causing the photo-degradation of α Si:H solar cells were investigated by comparing the different theoretical models explaining the SWE with the results obtained during this project.
|
48 |
Raman and photoluminescence spectroscopy from magnesium doped, as grown, hydrogen implanted and annealed GaNMaremane, Martin Koena 26 April 2005 (has links)
The presence of the hydrogen complex in Mg-doped GaN poses serious threats for the technological development of blue and ultraviolet light- emitting diodes and lasers. Since hydrogen is a difficult element to work with and it is incorporated into GaN through various mechanisms, a thorough understanding of hydrogen in GaN and other nitrides is essential to meet potential challenges by hydrogen. Most of the work done on the interaction of hydrogen implanted Mg-doped GaN deals mainly with passivation of the dopants and formation of the hydrogen complex with magnesium. However, the role of hydrogen implantation on the optical properties of Mg-doped GaN is not well understood. This study is mainly about optical properties of Mg-doped GaN and the effects of hydrogen on the Mg-doped GaN. Theoretically, group theory is used to determine the total number of symmetry allowed modes in GaN, Raman active modes and possible overtones. Experimentally, Raman and photoluminescence spectroscopy verify the theoretical results. / Dissertation (MSc)--University of Pretoria, 2006. / Physics / unrestricted
|
49 |
Investigation of Selected Optically-Active Nanosystems Fashioned using Ion ImplantationMitchell, Lee 05 1900 (has links)
Opto-electronic semiconductor technology continues to grow at an accelerated pace, as the industry seeks to perfect devices such as light emitting diodes for purposes of optical processing and communication. A strive for greater efficiency with shrinking device dimensions, continually pushes the technology from both a design and materials aspect. Nanosystems such a quantum dots, also face new material engineering challenges as they enter the realm of quantum mechanics, with each system and material having markedly different electronic properties. Traditionally, the semiconductor industry has focused on materials such Group II-VI and III-V compounds as the basis material for future opto-electronic needs. Unfortunately, these material systems can be expensive and have difficulties integrating into current Si-based technology. The industry is reluctant to leave silicon due in part to silicon's high quality oxide, and the enormous amount of research invested into silicon based circuit fabrication. Although recently materials such as GaN are starting to dominate the electro-optical industry since a Si-based substitute has not been found. The purpose of the dissertation was to examine several promising systems that could be easily integrated into current Si-based technology and also be produced using simple inexpensive fabrication techniques such ion implantation. The development of optically active nano-sized precipitates in silica to form the active layer of an opto-electronic device was achieved with ion implantation and thermal annealing. Three material systems were investigated. These systems consisted of carbon, silicon and metal silicide based nanocrystals. The physical morphology and electronic properties were monitored using a variety of material characterization techniques. Rutherford backscattering/channeling were used to monitor elemental concentrations, photoluminescence was used to monitor the opto-electronic properties and transmission electron microscopy was used to study the intricate morphology of individual precipitates. The electronic properties and the morphology were studied as a function of implant dose, anneal times and anneal temperatures.
|
50 |
Linear and Nonlinear Optical Techniques to Characterize Narrow Gap Semicondutors: (Hg /Cd)Te and InSbMcClure, Stephen Warren 05 1900 (has links)
Several methods have been developed and used to characterize the narrow gap semiconductors Hg^_xCdxTe (HgCdTe) (0.20<x<0.32) and InSb both in the presence of CO2 laser radiation and in the dark. The results have allowed the determination of certain band parameters including the fundamental energy bandgap Eg which is directly related to x, the mole fraction of Cd. In the dark, characterization of several different samples of HgCdTe and InSb were carried out by analyzing the temperature dependence of the Hall coefficient and the magnetic field positions of the magnetophonon extrema from which their x-values were determined. The quality of the magnetophonon spectra is also shown to be related to the inhomogeneity Ax of the HgCdTe samples.
One-photon magneto-absorption (OPMA) spectra have been obtained for x ~ 0.2 samples of p-HgCdTe thin films and n-HgCdTe bulk samples. Analysis of the OPMA transition energies allows the x-value to be determined to within « ±0.001. A method is also discussed which can be used to estimate the sample inhomogeneity Ax. Nonlinear optical properties of semiconductors are not only scientifically interesting to study, but are also proving to be technologically important as various nonlinear optical devices are being developed. One of the most valuable nonlinear optical characterization method uses twophoton absorption (TPA). Two techniques using TPA processes were developed and used to measure the cut-off wavelength of several different samples of HgCdTe (x ~ 0.3) from which x-values were determined to within «± 0.0005. Intensity and temperature dependent measurements on impurity and TPA processes have also been carried out and the results are compared with rate equations describing the photo-excited carrier dynamics. These results have yielded important information about the optical and material properties of HgCdTe such as the detection of impurity and trapping levels, TPA coefficients, carrier lifetimes, and recombination mechanisms. TPA and impurity absorption studies were also carried out on n— and p—InSb in order to obtain information about impurity levels, carrier lifetimes, and recombination mechanisms.
|
Page generated in 0.0836 seconds