• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semigrupos de operadores lineares aplicados às equações diferenciais parciais

Rosa, Rosemeire Aparecida [UNESP] 25 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-25Bitstream added on 2014-06-13T20:48:30Z : No. of bitstreams: 1 rosa_ra_me_sjrp.pdf: 528158 bytes, checksum: 87eb91b0d9f48ee60092159a596eccf5 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho vamos estudar a existência e unicidade de solução para equações da forma { u + Au = f(t,u) u(t0)= u0 ∈ X, (I) onde X é um espaço de Banach, A : D(A) ⊂ X → X é um operador linear, f é uma função não linear conhecida, u0 ∈ X é um dado inical conhecido e u : I ⊂ R → X é uma função desconhecida e t0 ∈ I. Faremos este estudo usando a Teoria dos Semigrupos de Operadores Lineares. Para melhor entendimento do estudo das equações (I), faremos duas aplicações. A primeira tratando de um modelo (linear) de divisão celular e a segunda, do modelo (não linear) de condução do calor. / In this work we will study the existence and uniqueness of the solutions for the following equation { u + Au = f(t,u) u(t0)= u0 ∈ X, (I) where X is a Banach space, A : D(A) ⊂ X → X is a linear operator, f is a nonlinear function, u : I ⊂ R → X is unknown function. In this study we will use the theory of semigroup of linear operators. For a best understanding of the study of equations (I), we will do two applications. The first one, is a (linear) model of cellular division and the second one, is about the (nonlinear) model od conduction of the heat.
2

Aplicações de semigrupos em sistemas de reação-difusão e a existência de ondas viajantes / Semigroup applications to reaction-diffusion equations and travelling wave solutions existence

Silva, Juliana Fernandes da 16 August 2010 (has links)
Sistemas de reação-difusão têm sido largamente estudados em diferentes contextos e através de diferentes métodos, motivados pela sua constante aparição em modelos de interação em contextos químicos, biológicos e ainda em fenômenos ecológicos. Neste trabalho nos propomos a estudar existência e unicidade - tanto do ponto de vista local como global - de soluções para uma classe de sistemas de reação-difusão acoplados, denidos em R^2, utilizando como ferramenta a teoria de semigrupos de operadores lineares. Apresentamos dois importantes exemplos: o modelo de Rosenzweig-MacArthur e um particular caso da classe de equações lambda-omega. Para o primeiro obtemos um resultado de existência e unicidade global utilizando um método de comparação envolvendo sub e super-soluções. Investigamos ainda a existência de soluções de ondas viajantes periódicas através do teorema de Bifurcação de Hopf. Já para o caso da equação lambda-omega obtemos a existência e unicidade de solucões, entretanto, a partir da aplicação da teoria de semigrupos de operadores lineares. / Reaction-diffusion systems have been widely studied in a broad variety of contexts in a large amount of disctinct approaches. It is due firstly by their constant appearance in interaction models in disciplines such as chemistry, biology and, more specific, ecology. The aim of this thesis is to provide an existence-uniqueness result - both from the local as well as from the global point of view - for solutions of a particular class of coupled reaction-diffusion systems defined over R^2. It is done applying the well established theory of semigroups of linear operators. Two remarkable examples of such systems are discussed: the Rosenzweig-MacArthur predator-prey model and a special case of lambda-omega class of equations. For the former one, an existence and uniqueness result is obtained through a comparison method - based on the notions of lower and upper solutions. Moreover, we investigate the existence of periodic travelling wave solutions via a Hopf bifurcation theorem. For the lambda-omega model another existence and uniqueness for solutions is obtained, on its turn, through the machinery obtained previously from the theory of semigroups for linear operators.
3

Aplicações de semigrupos em sistemas de reação-difusão e a existência de ondas viajantes / Semigroup applications to reaction-diffusion equations and travelling wave solutions existence

Juliana Fernandes da Silva 16 August 2010 (has links)
Sistemas de reação-difusão têm sido largamente estudados em diferentes contextos e através de diferentes métodos, motivados pela sua constante aparição em modelos de interação em contextos químicos, biológicos e ainda em fenômenos ecológicos. Neste trabalho nos propomos a estudar existência e unicidade - tanto do ponto de vista local como global - de soluções para uma classe de sistemas de reação-difusão acoplados, denidos em R^2, utilizando como ferramenta a teoria de semigrupos de operadores lineares. Apresentamos dois importantes exemplos: o modelo de Rosenzweig-MacArthur e um particular caso da classe de equações lambda-omega. Para o primeiro obtemos um resultado de existência e unicidade global utilizando um método de comparação envolvendo sub e super-soluções. Investigamos ainda a existência de soluções de ondas viajantes periódicas através do teorema de Bifurcação de Hopf. Já para o caso da equação lambda-omega obtemos a existência e unicidade de solucões, entretanto, a partir da aplicação da teoria de semigrupos de operadores lineares. / Reaction-diffusion systems have been widely studied in a broad variety of contexts in a large amount of disctinct approaches. It is due firstly by their constant appearance in interaction models in disciplines such as chemistry, biology and, more specific, ecology. The aim of this thesis is to provide an existence-uniqueness result - both from the local as well as from the global point of view - for solutions of a particular class of coupled reaction-diffusion systems defined over R^2. It is done applying the well established theory of semigroups of linear operators. Two remarkable examples of such systems are discussed: the Rosenzweig-MacArthur predator-prey model and a special case of lambda-omega class of equations. For the former one, an existence and uniqueness result is obtained through a comparison method - based on the notions of lower and upper solutions. Moreover, we investigate the existence of periodic travelling wave solutions via a Hopf bifurcation theorem. For the lambda-omega model another existence and uniqueness for solutions is obtained, on its turn, through the machinery obtained previously from the theory of semigroups for linear operators.
4

Semigrupos de operadores lineares aplicados às equações diferenciais parciais /

Rosa, Rosemeire Aparecida. January 2011 (has links)
Orientador: Germán Jesus Lozada Cruz / Banca: Marcos Roberto Teixeira Primo / Banca: Andréa Cristina Prokopezyk Arita / Resumo: Neste trabalho vamos estudar a existência e unicidade de solução para equações da forma { u + Au = f(t,u) u(t0)= u0 ∈ X, (I) onde X é um espaço de Banach, A : D(A) ⊂ X → X é um operador linear, f é uma função não linear conhecida, u0 ∈ X é um dado inical conhecido e u : I ⊂ R → X é uma função desconhecida e t0 ∈ I. Faremos este estudo usando a Teoria dos Semigrupos de Operadores Lineares. Para melhor entendimento do estudo das equações (I), faremos duas aplicações. A primeira tratando de um modelo (linear) de divisão celular e a segunda, do modelo (não linear) de condução do calor. / Abstract: In this work we will study the existence and uniqueness of the solutions for the following equation { u + Au = f(t,u) u(t0)= u0 ∈ X, (I) where X is a Banach space, A : D(A) ⊂ X → X is a linear operator, f is a nonlinear function, u : I ⊂ R → X is unknown function. In this study we will use the theory of semigroup of linear operators. For a best understanding of the study of equations (I), we will do two applications. The first one, is a (linear) model of cellular division and the second one, is about the (nonlinear) model od conduction of the heat. / Mestre

Page generated in 0.1323 seconds