• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Qualitative Methods for Inverse Scattering in Solid Mechanics

Bellis, Cédric 03 December 2010 (has links) (PDF)
Contexte. Les problèmes inverses, qui font l'objet de nombreuses études aujourd'hui, apparaissent dans une large gamme d'applications : imagerie et tomographie, identification de propriétés matérielles, contrôle non destructif,... L'étude présentée s'inscrit dans le cadre de ce dernier exemple. Elle a pour objet la recherche de nouvelles méthodes, numériquement rapides, permettant une identification qualitative d'objets (inclusions, cavités, fissures,...) enfouis dans des milieux élastiques linéaires, en connaissant (au moins partiellement) la réponse en surface à une sollicitation dynamique. La plupart des méthodes classiquement utilisées pour traiter ce type de problèmes sont fondées sur des algorithmes itératifs de minimisation qui requièrent un grand nombre de simulations directes. Dans le contexte considéré pour cette étude (propagation d'ondes dans des solides élastiques tridimensionnels), ces simulations sont très coûteuses numériquement. L'émergence récente de techniques permettant de sonder, numériquement, de façon non-itérative un milieu donné, a permis d'aborder ces problèmes sous un nouveau jour. Un ensemble d'études a en particulier montré, dans le cadre des hypothèses adoptées pour cette thèse, l'intérêt de méthodes telles que la Sensibilité Topologique ou le Linear Sampling, pour une détection approchée mais rapide. Objectifs de la thèse. L'étude qui est présentée ici, s'inscrit dans la perspectives du développement des deux méthodes mentionnées, dans le contexte de la mécanique des solides déformables, c'est-à-dire pour des problèmes de diffraction inverse en acoustique et en élasticité. Les différents point abordés dans ce travail sont les suivants : • Appréciation des capacités et des performances respectives des deux méthodes, en particulier lorsqu'elles sont mises en œuvre dans des codes numériques usuels, fondés par exemple sur la méthode des éléments finis. • Utilisation de ces développements pour une identification qualitative combinant géométrie et propriétés matérielles des défauts diffractants inconnus. • Extension de ces méthodes, ainsi que démonstration de leurs pertinences, pour des problèmes de diffraction inverse dans le domaine temporel ou utilisation des mesures multi-fréquentielles des champs diffractés. • Etude de quelques problèmes théoriques fondamentaux pour la justification et la mise en œuvre rigoureuse de ces méthodes. • Compréhension des liens théoriques pouvant exister entre la méthode de sensibilité topologique et la méthode de ”linear sampling”.
2

Sur le problème inverse de détection d'obstacles par des méthodes d'optimisation / The inverse problem of obstacle detection via optimization methods

Godoy Campbell, Matias 08 July 2016 (has links)
Cette thèse porte sur l'étude du problème inverse de détection d'obstacle/objet par des méthodes d'optimisation. Ce problème consiste à localiser un objet inconnu oméga situé à l'intérieur d'un domaine borné connu Oméga à l'aide de mesures de bord et plus précisément de données de Cauchy sur une partie Gammaobs de thetaOmega. Nous étudions les cas scalaires et vectoriels pour ce problème en considérant les équations de Laplace et de Stokes. Dans tous les cas, nous nous appuyons sur une résultat d'identifiabilité qui assure qu'il existe un unique obstacle/objet qui correspond à la mesure de bord considérée. La stratégie utilisée dans ce travail est de réduire le problème inverse à la minimisation d'une fonctionnelle coût: la fonctionnelle de Kohn-Vogelius. Cette approche est fréquemment utilisée et permet notamment d'utiliser des méthodes d'optimisation pour des implémentations numériques. Cependant, afin de bien définir la fonctionnelle, cette méthode nécessite de connaître une mesure sur tout le bord extérieur thetaOmega. Ce dernier point nous conduit à étudier le problème de complétion de données qui consiste à retrouver les conditions de bord sur une région inaccessible, i.e. sur thetaOmega\Gammaobs, à partir des données de Cauchy sur la région accessible Gammaobs. Ce problème inverse est également étudié en minimisant une fonctionnelle de type Kohn-Vogelius. La caractère mal posé de ce problème nous amène à régulariser la fonctionnelle via une régularisation de Tikhonov. Nous obtenons plusieurs propriétés théoriques comme des propriétés de convergence, en particulier lorsque les données sont bruitées. En tenant compte de ces résultats théoriques, nous reconstruisons numériquement les données de bord en mettant en oeuvre un algorithme de gradient afin de minimiser la fonctionnelle régularisée. Nous étudions ensuite le problème de détection d'obstacle lorsque seule une mesure de bord partielle est disponible. Nous considérons alors les conditions de bord inaccessibles et l'objet inconnu comme les variables de la fonctionnelle et ainsi, en utilisant des méthodes d'optimisation de forme géométrique, en particulier le gradient de forme de la fonctionnelle de Kohn-Vogelius, nous obtenons la reconstruction numérique de l'inclusion inconnue. Enfin, nous considérons, dans le cas vectoriel bi-dimensionnel, un nouveau degré de liberté en étudiant le cas où le nombre d'objets est inconnu. Ainsi, nous utilisons l'optimisation de forme topologique afin de minimiser la fonctionnelle de Kohn-Vogelius. Nous obtenons le développement asymptotique topologique de la solution des équations de Stokes 2D et caractérisons le gradient topologique de cette fonctionnelle. Nous déterminons alors numériquement le nombre d'obstacles ainsi que leur position. De plus, nous proposons un algorithme qui combine les méthodes d'optimisation de forme topologique et géométrique afin de déterminer numériquement le nombre d'obstacles, leur position ainsi que leur forme. / This PhD thesis is dedicated to the study of the inverse problem of obstacle/object detection using optimization methods. This problem consists in localizing an unknown object omega inside a known bounded domain omega by means of boundary measurements and more precisely by a given Cauchy pair on a part Gammaobs of thetaOmega. We cover the scalar and vector scenarios for this problem considering both the Laplace and the Stokes equations. For both cases, we rely on identifiability result which ensures that there is a unique obstacle/object which corresponds to the considered boundary measurements. The strategy used in this work is to reduce the inverse problem into the minimization of a cost-type functional: the Kohn-Vogelius functional. This kind of approach is widely used and permits to use optimization tools for numerical implementations. However, in order to well-define the functional, this approach needs to assume the knowledge of a measurement on the whole exterior boundary thetaOmega. This last point leads us to first study the data completion problem which consists in recovering the boundary conditions on an inaccessible region, i.e. on thetaOmega\Gammaobs, from the Cauchy data on the accessible region Gammaobs. This inverse problem is also studied through the minimization of a Kohn-Vogelius type functional. The ill-posedness of this problem enforces us to regularize the functional via a Tikhonov regularization. We obtain several theoretical properties as convergence properties, in particular when data is corrupted by noise. Based on these theoretical results, we reconstruct numerically the boundary data by implementing a gradient algorithm in order to minimize the regularized functional. Then we study the obstacle detection problem when only partial boundary measurements are available. We consider the inaccessible boundary conditions and the unknown object as the variables of the functional and then, using geometrical shape optimization tools, in particular the shape gradient of the Kohn-Vogelius functional, we perform the numerical reconstruction of the unknown inclusion. Finally, we consider, into the two dimensional vector case, a new degree of freedom by studying the case when the number of objects is unknown. Hence, we use the topological shape optimization in order to minimize the Kohn-Vogelius functional. We obtain the topological asymptotic expansion of the solution of the 2D Stokes equations and characterize the topological gradient for this functional. Then we determine numerically the number and location of the obstacles. Additionally, we propose a blending algorithm which combines the topological and geometrical shape optimization methods in order to determine numerically the number, location and shape of the objects.
3

Détection d'un objet immergé dans un fluide

Caubet, Fabien 29 June 2012 (has links) (PDF)
Cette thèse s'inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de type détection à l'aide du calcul de forme et de l'analyse asymptotique : l'objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes : peut-on détecter un objet immergé dans un fluide à partir d'une mesure effectuée à la surface du fluide ? Peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ? Peut-on connaître le nombre d'objets présents dans le fluide en utilisant cette mesure ? Pour répondre à ces questions, le problème inverse est analysé comme un problème d'optimisation en minimisant une fonctionnelle coût, la variable étant la forme inconnue. Deux différentes approches sont considérées dans ce travail : l'optimisation géométrique (à l'aide des dérivées de forme et du gradient de forme) et l'optimisation topologique (à l'aide d'un développement asymptotique et du "gradient" topologique). Dans un premier temps, un cadre mathématique est mis en place pour démontrer l'existence des dérivées de forme d'ordre un et deux pour les problèmes de détection d'inclusions. Le problème inverse considéré est ensuite analysé à l'aide de l'optimisation géométrique de forme : un résultat d'identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l'instabilité de ce problème inverse est enfin démontrée. Ces résultats théoriques sont alors utilisés pour reconstruire numériquement des objets immergés dans un fluide à l'aide d'un algorithme de gradient régularisé par une méthode de projection. Enfin, la localisation de petites inclusions dans un fluide est étudiée à l'aide de l'optimisation topologique pour une fonctionnelle de forme de Kohn-Vogelius. L'expression théorique de la dérivée topologique est finalement utilisée pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l'aide d'un algorithme de gradient topologique. Les limites effectives de cette approche sont explorées : la pénétration reste faible dans ce problème stationnaire.
4

Détection d’un objet immergé dans un fluide / Location of an object immersed in a fluid

Caubet, Fabien 29 June 2012 (has links)
Cette thèse s’inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de détection à l’aide du calcul de forme et de l’analyse asymptotique. L’objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes :– peut-on détecter un objet immergé dans un fluide à partir d’une mesure effectuée à la surface ?– peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ?– peut-on connaître le nombre d’objets présents dans le fluide en utilisant cette mesure ?Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse :– le premier met en place un cadre mathématique pour démontrer l’existence des dérivées de forme d’ordre un et deux pour les problèmes de détection d’inclusions ;– le deuxième analyse le problème de détection à l’aide de l’optimisation géométrique de forme : un résultat d’identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l’instabilité de ce problème inverse est enfin démontrée ;– le chapitre 3 utilise nos résultats théoriques pour reconstruire numériquement des objets immergés dans un fluide à l’aide d’un algorithme de gradient de forme ;– le chapitre 4 analyse la localisation de petites inclusions dans un fluide à l’aide de l’optimisation topologique de forme : le gradient topologique d’une fonctionnelle de forme de Kohn-Vogelius est caractérisé ;– le dernier chapitre utilise cette dernière expression théorique pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l’aide d’un algorithme de gradient topologique. / This dissertation takes place in the mathematic field called shape optimization. More precisely, we focus on a detecting inverse problem using shape calculus and asymptotic analysis. The aim is to localize an object immersed in a viscous, incompressible and stationary fluid. This work was motivated by the following main questions:– can we localize an obstacle immersed in a fluid from a boundary measurement?– can we reconstruct numerically this object, i.e. be close to its localization and its shape, from this measure?– can we know how many objects are included in the fluid using this measure?The results are described in the five chapters of the thesis:– the first one gives a mathematical framework in order to prove the existence of the shape derivatives oforder one and two in the frame of the detection of inclusions;– the second one analyzes the detection problem using geometric shape optimization: an identifiabilityresult is proved, the shape gradient of several shape functionals is characterized and the instability of thisinverse problem is proved;– the chapter 3 uses our theoretical results in order to reconstruct numerically some objets immersed in a fluid using a shape gradient algorithm;– the fourth chapter analyzes the detection of small inclusions in a fluid using the topological shape optimization : the topological gradient of a Kohn-Vogelius shape functional is characterized;– the last chapter uses this theoretical expression in order to determine numerically the number and the location of some small obstacles immersed in a fluid using a topological gradient algorithm.

Page generated in 0.0892 seconds