• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 6
  • 5
  • 2
  • Tagged with
  • 66
  • 66
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Resurgent sodicum current modulation by auxiliary subunits in dorsal root ganglia neurons and potential implications in pain pathologies

Barbosa Nuñez, Cindy Marie 11 April 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Increased electrical activity in peripheral sensory neurons contributes to pain. A unique type of sodium current, fast resurgent current, is proposed to increase nerve activity and has been associated with pain pathologies. While sodium channel isoform Nav1.6 has been identified as the main carrier of fast resurgent currents, our understanding of how resurgent currents are modulated in sensory neurons is fairly limited. Thus the goal of this dissertation was to identify resurgent current modulators. In particular, we focused on sodium channel beta subunits (Navβs) and fibroblast growth factor homologous factors (FHFs) in dorsal root ganglion (DRG) neurons. We hypothesized that Navβ4 and FHF2B act as positive regulators by mediating resurgent currents and modulating Nav1.6 inactivation, respectively. In contrast, we hypothesized FHF2A negatively regulates resurgent current by increasing the probability of channels in inactivated states. Thus, the aims of this dissertation were to 1) determine if Navβ4 regulates fast resurgent currents in DRG neurons, 2) examine the effects of Navβ4 knockdown on resurgent currents, firing frequency and pain associated behavior in an inflammatory pain model and 3) determine if FHF2A and FHF2B functionally regulate Nav1.6 currents, including resurgent currents in DRG neurons. To examine the aims, we used biochemical, electrophysiological and behavioral assays. Our results suggest that Navβ4 is a positive regulator of resurgent currents: in particular, the C-terminus likely mediates these currents. Localized knockdown of Navβ4 decreased inflammation-induced enhancement of resurgent currents and neuronal excitability, and prevented the development of persistent pain associated behavior in an inflammatory pain model. FHF2B increased resurgent currents and delayed inactivation. In contrast, FHF2A limited resurgent currents; an effect that is mainly contributed by FHF2A's N-terminus activity that increased accumulation of channels in inactivated states. Interestingly, in an inflammatory pain model FHF2B was upregulated and FHFA isoforms were downregulated. Together these results suggest that FHF2A/B modulation might contribute to enhanced resurgent currents and increased neuronal excitability observed in the inflammatory pain model. Overall, our work has identified three resurgent current modulators FHF2A, FHF2B and Navβ4. Manipulation of these proteins or their activity might result in novel strategies for the study and treatment of pain.
22

The AIB interneurons are modulated by excitatory and inhibitory signaling pathways to shape aversive behaviors in response to 1-octanol

Layne, Robert Michael January 2015 (has links)
No description available.
23

Cellular Mechanisms Mediating the Actions of Nerve Growth Factor in Sensory Neurons

Park, Kellie Adrienne 08 August 2007 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Nerve growth factor (NGF) is a neurotrophin upregulated with injury and inflammation. Peripheral administration of NGF causes hyperalgesia and allodynia in animals. Blocking NGF signaling reverses these effects. At the cellular level, chronic exposure of sensory neurons to NGF enhances expression the neurotransmitter, calcitonin gene-related peptide (CGRP). Acute exposure to NGF increases capsaicin-evoked CGRP release from sensory neurons in culture. Thus, NGF increases peptide release from neurons by: (1) increasing expression of peptides, and/or (2) altering their sensitivity. The increase in peptide outflow by either mechanism could contribute to development of hyperalgesia and allodynia. The signaling cascades mediating the actions of NGF in sensory neurons are unclear. Therefore, experiments were designed to determine which pathways regulate changes in iCGRP content and evoked release from primary sensory neurons in culture. The Ras/MEK/ERK cascade was identified as a possible regulator of iCGRP expression in response to NGF. To test this pathway, it was manipulated in neurons by (1) expression of dominant negative or constitutively active isoforms of Ras, (2) farnesyltransferase inhibition, (3) manipulation of the RasGAP, synGAP, and (4) blocking MEK activity. When the pathway was blocked, the NGF-induced increase in iCGRP expression was attenuated. When the Ras pathway was activated, iCGRP expression increased. These data indicate that Ras, and downstream signaling kinases, MEK and ERK, regulate the NGF-induced increases in CGRP in sensory neurons. To determine which pathway(s) regulate the increase in capsaicin-evoked iCGRP release upon brief exposure to NGF, the Ras/MEK/ERK pathway was manipulated as described above, and pharmacological inhibitors of the PI3 kinase, PLC, and Src kinase pathways were used. There were no differences observed in NGF-sensitization when the Ras and PI3 kinase pathways were inhibited, suggesting these two pathways were not involved. However, when the Src kinase inhibitor PP2 was used, the NGF-induced increase in release was completely blocked. Furthermore, the PKC inhibitor, BIM, also inhibited the sensitization by NGF. This data indicate Src and PKC regulate of sensitivity of sensory neurons in response to brief exposure to NGF. Thus, there is differential regulation of iCGRP content and evoked release from sensory neurons in response to NGF.
24

An exploration of the mechanisms behind peripheral nerve injury

Wiberg, Rebecca January 2016 (has links)
Despite surgical innovation, the sensory and motor outcome after peripheral nerve injury is incomplete. In this thesis, the biological pathways potentially responsible for the poor functional recoveries were investigated in both the distal nerve stump/target organ, spinal motoneurons and dorsal root ganglia (DRG). The effect of delayed nerve repair was determined in a rat sciatic nerve transection model. There was a dramatic decline in the number of regenerating motoneurons and myelinated axons found in the distal nerve stumps of animals undergoing nerve repair after a delay of 3 and 6 months. RT-PCR of the distal nerve stumps showed a decline in expression of Schwann cells (SC) markers, with a progressive increase in fibrotic and proteoglycan scar markers, with increased delayed repair time. Furthermore, the yield of SC which could be isolated from the distal nerve segments progressively fell with increased delay in repair time. Consistent with the impaired distal nerve stumps the target medial gastrocnemius (MG) muscles at 3- and 6-months delayed repair were atrophied with significant declines in wet weights (61% and 27% compared with contralateral sides). The role of myogenic transcription factors, muscle specific microRNAs and musclespecific E3 ubiquitin ligases in the muscle atrophy was investigated in both gastrocnemius and soleus muscles following either crush or nerve transection injury. In the crush injury model, the soleus muscle showed significantly increased recovery in wet weight at days 14 and 28 (compared with day 7) which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. Morphological and molecular changes in spinal motoneurons were compared after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA). Neuronal degeneration was indicated by decreased immunostaining for microtubule-associated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Immunostaining for ED1-reactive microglia and GFAPpositive astrocytes was significantly elevated in all experimental groups. qRT-PCR analysis and Western blotting of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of apoptotic cell death mediators including caspases-3 and -8 and a range of related death receptors following VRA. In contrast, following PNA, only caspase-8 was moderately upregulated. The mechanisms of primary sensory neuron degeneration were also investigated in the DRG following peripheral nerve axotomy, where several apoptotic pathways including those involving the endoplasmic reticulum were shown to be upregulated. In summary, these results show that the critical time point after which the outcome of regeneration becomes too poor appears to be 3-months. Both proximal and distal injury affect spinal motoneurons morphologically, but VRA induces motoneuron degeneration mediated through both intrinsic and extrinsic apoptotic pathways. Primary sensory neuron degeneration involves several different apoptotic pathways, including the endoplasmic reticulum.
25

Exploring the Function of a Novel Chronic Pain Player

Hütte, Meike 11 June 2020 (has links)
No description available.
26

Analyses of neuronal replacement in the neuron-depleted olfactory systems in adult mice

Unknown Date (has links)
New neurons are continuously generated in the olfactory system of adult mice, including olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) and interneurons, produced in the subventricular zone (SVZ) and migrated toward olfactory bulb (OB) along rostral migratory stream (RMS). The present study observed the effects of target neuron loss on the life-span and maturation of adult-born OSNs in the OE and on the proliferation, migration and differentiation of SVZ stem cells in the forebrain after eliminating bulb neurons. We found the life-span of newborn neurons in the absence of synaptic targets was shortened, but the timing of maturation was not delayed. In addition, SVZ cells continued to divide and migrate to the damaged bulb, and the migration of newborn cells in the RMS on the contralateral side was delayed at 2 weeks post-BrdU. Also, the proliferation of cells in dentate gyrus of the hippocampus was not affected by OB damage at 3 weeks post-lesion, though lesion affects occurred in the adult SVZ/RMS. / by Huan Liu. / Thesis (M.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
27

The effects of neurotrophins on neurite growth in cultured adult sensory neurons /

Kimpinski, Kurt, January 2001 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2002. / Bibliography: leaves 177-206.
28

THE ROLE OF MACROPHAGES IN OLFACTORY NEUROGENESIS

Borders, Aaron S. 01 January 2007 (has links)
Olfactory sensory neurons (OSNs) undergo continual degeneration and replacement throughout life, a cycle that can be synchronized experimentally by performing olfactory bulbectomy (OBX). OBX induces apoptosis of mature OSNs, which is followed by an increase in the proliferation of progenitor basal cells. Macrophages, functionally diverse immune effector cells, phagocytose the apoptotic OSNs and regulate the proliferation of basal cells. This provides an advantageous environment to study how macrophages regulate neuronal death, proliferation, and replacement. The purpose of this dissertation was to identify the cellular and molecular mechanisms by which macrophages regulate the degeneration/proliferation cycle of OSNs. Macrophages were selectively depleted using liposome-encapsulated clodronate (Lip-C). Intranasal and intravenous administration of Lip-C decreased the number of macrophages in the OE of sham and OBX mice by 38% and 35%, respectively, compared to mice treated with empty liposomes (Lip-O). Macrophage depletion significantly decreased OE thickness (22% and 21%, p<0.05), the number of mature OSNs (1.2- and 1.9-fold, p<0.05), and basal cell proliferation (7.6- and 3.8-fold, p<0.05) in sham and OBX mice, respectively, compared to Lip-O mice. Additionally, at 48 h following OBX, OSN apoptosis increased significantly (p<0.05) in the OE of Lip-C mice compared to Lip-O mice. A microarray analysis was performed to identify the genomic changes underlying the cellular changes associated with macrophage depletion. There were 4,024 genes with either a significant interaction between group (Lip-C vs. Lip-O) and treatment (OBX vs. sham) or a significant main effect. There were a number of significantly regulated immune response and cytoskeletal genes, and genes encoding neurogenesis regulators and growth factors, most of which were expressed at lower levels in Lip-C mice compared to Lip-O mice. Sdf1, the ligand for the chemokine receptor Cxcr4 involved in leukocyte trafficking, axon guidance, and cell migration, was localized to macrophages on the protein level. Additionally, the microarray expression pattern of Hdgf, a growth factor that promotes neuronal survival and proliferation, was validated on the protein level using immunohistochemistry. HDGF appeared to be localized to basal cells and OSNs where it could act as a proliferative or survival factor whose expression is regulated in part by macrophages.
29

Intracellular signaling underlying neurite growth in adult sensory neurons /

Jones, David M., January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2003. / Bibliography: leaves 110-138. Also available online.
30

Evidence for the involvement of cells that receive glossopharyngeal nerve input in oromotor responses

Hallock, Robert Matthew. January 2005 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Psychology Department, 2005. / Includes bibliographical references.

Page generated in 0.0622 seconds