Spelling suggestions: "subject:"reptation"" "subject:"septation""
1 |
Etude du rôle fonctionnel de l'O-acétylation et de l'amidation du peptidoglycane chez les lactobacilles / Study of the functionnal role of petidoglycan O-acetylation and amidation in lactobacilliBernard, Elvis 30 May 2012 (has links)
Le peptidoglycane (PG) est le composé majeur de la paroi des bactéries à Gram positif. Il est constitué de chaines de sucres, formées de l’alternance de N-acétyl-glucosamine (GlcNAc) et d’acide N-acétyl-muramique (MurNAc) et reliées entre elles par des chaines peptidiques. Cette structure confère à la bactérie une grande résistance mais aussi une certaine flexibilité qui lui permettent de grandir et de se diviser tout en gardant sa forme. Cette dualité entre rigidité et flexibilité est assurée par un équilibre entre l’activité des enzymes qui polymérisent le PG, les protéines liant la pénicilline (PBP), et de celles qui l’hydrolysent, les hydrolases du PG (PGH). Pendant ou après sa synthèse, la structure du PG peut subir différentes modifications, qui vont moduler l’activité des enzymes de synthèse et dégradation du PG. Au cours de ce travail, nous avons caractérisé les modifications structurales du PG chez deux espèces de lactobacilles et étudié leur rôle fonctionnel. Nous avons identifié la première amidotransférase responsable de l’amidation de l’acide méso-diaminopimélique et montré l’influence de cette modification sur l’activité d’une PGH, la L,D-carboxypeptidase DacB, ainsi que sur la synthèse du PG septal par les PBPs chez Lactobacillus plantarum. Nous avons ensuite mis en évidence pour la première fois une O-acétylation des GlcNAc en plus de l’O-acétylation des MurNAc, ces deux modifications étant réalisées par deux O-acétyl-transférases distinctes, OatA et OatB, qui jouent des rôles antagonistes dans le contrôle de l’activité des PGHs chez L. plantarum. Nous avons aussi révélé l’implication de l’O-acétyl-transférase OatA dans le contrôle de la septation. Enfin, nous avons montré l’influence de l’O-acétylation des MurNAc du PG sur les propriétés anti-inflammatoires d’une souche de Lactobacillus casei. / Peptidoglycan (PG) is the major component of the gram positive cell wall. It is composed of glycan chains formed by the polymerization of the N-acetylglucosamine-N-acetyl muramic acid heterodimer, and cross-linked by peptidic stem. This structure confers high resistance to the bacterial cell wall but also some flexibility allowing growth and shape maintenance. This duality between rigidity and flexibility is the result of a steady-state between the PG polymerizing enzymes, the penicillin binding protein (PBP) and the PG hydrolases (PGH). More or less concomitantly with its synthesis, certain modifications can occur on PG structure that will modulate the activity of PG synthesis and degradation enzymes.During this work, we have characterized the PG structural modifications in two lactobacilli species and studied their functional role. We have identified the first amidotransferase involved in meso-diaminopimelic acid amidation and shown the influence of this modification on the activity of the L,D-carboxypeptidase, DacB, and also on the septal PG synthesis by the PBP in Lactobacillus plantarum. Then, we have highlighted for the first time, the presence of O-acetylation on GlcNAc in addition to O-acetylation on MurNAc. These two modifications are catalyzed by two dedicated O-acetyltransferases, OatB and OatA respectively, that control PGH activity in an antagonistic way. We have also demonstrated the implication of the OatA O-acetyltransferase in septation control. Finally, we have shown the influence of PG MurNAc O-acetylation on the anti-inflammatory properties of a Lactobacillus casei strain.
|
2 |
<i>Schizosaccharomyces pombe </i> Phosphatidylinositol 4-kinase, Pik1p, in cell cycle controlPark, Jae-Sook 15 May 2007
Pik1p, one of three phosphatidylinositol 4-kinases in the fission yeast, <i>Schizosaccharomyces pombe</i>, was found previously to interact with Cdc4p, a myosin essential light chain that is required for cytokinesis. The involvement of pik1 in cell cycle control was investigated. A fluorescently tagged Pik1p fusion protein was associated with Golgi throughout the cycle, and was found at the medial division plane of the cell during late cytokinesis. This latter distribution has not been reported previously. Gene deletion in diploid cells and tetrad analysis revealed that pik1 is essential for cell viability and is required for spore germination. The terminal phenotype of a temperature-sensitive, loss-of-function allele (pik1-td) indicated that pik1 is involved in cytokinesis: particularly for suppression of secondary septum material deposition, for suppression of initiation of supernumerary septa, and for cell separation. Contractile ring formation was normal in pik1-td cells at the restrictive temperature although the pattern of F-actin patches was disrupted. The F-actin patches were dispersed throughout the cytoplasm. Accumulation of extra inner membranous or vesicle-like structures was observed in these cells. The <i>S. pombe</i> nmt1 promoter and attenuated versions of it were found to be useful for complementation studies in <i>S. cerevisiae</i>. Heterologous expression of <i>S. pombe</i> pik1 complemented the essential functions of a temperature-sensitive allele (pik1101) of its orthologue in <i>Saccharomyces cerevisiae</i> that were lost at the restrictive temperature. A residue required for <i>S. pombe</i> Pik1p lipid kinase activity, D709, was also required for this complementation. A residue, R838, which is required for interactions between Pik1p and Cdc4p was not required for this complementation. The timing and localization of Pik1p to the division plane of the cell late in cytokinesis combined with analysis of the terminal phenotype of a loss-of-function allele, indicate that Pik1p and/or its derived phosphoinositides are required for regulation of septation and cell separation. Pik1p may be involved in the transport, possibly via vesicular transport, of enzymes required for hydrolysis of the primary septum. It may be involved in signaling pathways that lead to the initiation of septation and to the cessation of the deposition of secondary septum material.
|
3 |
<i>Schizosaccharomyces pombe </i> Phosphatidylinositol 4-kinase, Pik1p, in cell cycle controlPark, Jae-Sook 15 May 2007 (has links)
Pik1p, one of three phosphatidylinositol 4-kinases in the fission yeast, <i>Schizosaccharomyces pombe</i>, was found previously to interact with Cdc4p, a myosin essential light chain that is required for cytokinesis. The involvement of pik1 in cell cycle control was investigated. A fluorescently tagged Pik1p fusion protein was associated with Golgi throughout the cycle, and was found at the medial division plane of the cell during late cytokinesis. This latter distribution has not been reported previously. Gene deletion in diploid cells and tetrad analysis revealed that pik1 is essential for cell viability and is required for spore germination. The terminal phenotype of a temperature-sensitive, loss-of-function allele (pik1-td) indicated that pik1 is involved in cytokinesis: particularly for suppression of secondary septum material deposition, for suppression of initiation of supernumerary septa, and for cell separation. Contractile ring formation was normal in pik1-td cells at the restrictive temperature although the pattern of F-actin patches was disrupted. The F-actin patches were dispersed throughout the cytoplasm. Accumulation of extra inner membranous or vesicle-like structures was observed in these cells. The <i>S. pombe</i> nmt1 promoter and attenuated versions of it were found to be useful for complementation studies in <i>S. cerevisiae</i>. Heterologous expression of <i>S. pombe</i> pik1 complemented the essential functions of a temperature-sensitive allele (pik1101) of its orthologue in <i>Saccharomyces cerevisiae</i> that were lost at the restrictive temperature. A residue required for <i>S. pombe</i> Pik1p lipid kinase activity, D709, was also required for this complementation. A residue, R838, which is required for interactions between Pik1p and Cdc4p was not required for this complementation. The timing and localization of Pik1p to the division plane of the cell late in cytokinesis combined with analysis of the terminal phenotype of a loss-of-function allele, indicate that Pik1p and/or its derived phosphoinositides are required for regulation of septation and cell separation. Pik1p may be involved in the transport, possibly via vesicular transport, of enzymes required for hydrolysis of the primary septum. It may be involved in signaling pathways that lead to the initiation of septation and to the cessation of the deposition of secondary septum material.
|
4 |
Long-term Changes in Alveolarization in the Postnatal Rat Following Transient Inhibition of Early "Classical" AlveologenesisLau, Mandy 06 April 2010 (has links)
Rationale: Activation of the platelet-derived growth factor receptors-α and -β (PDGF-Rα and -Rβ) is critical in the formation of secondary crests/septa during alveologenesis, and its regulation has been found to be disrupted in rat lung injury models.
Objective: To determine whether the process of secondary septation can occur after transient pharmacologic inhibition of PDGF-R action during postnatal days (P)1 – 7 in rats.
Hypothesis: The initial process of secondary crest formation is time-limited and, if missed, will result in a permanent loss of alveoli.
Methods: Imatinib mesylate, a PDGF-R inhibitor, was injected intraperitoneally from P1 – 7. Pups were sacrificed on P2, 4, 8, 14, 28 and 65 for studies of alveolar development.
Main results: The injection of imatinib inhibited PDGF-R action, resulting in a permanent decrease in alveolar number in treated rats.
Conclusions: Inhibition of secondary septation during the first 7 days of life resulted in a decrease in alveolar number lasting into early adult life. This is consistent with a critical time window for secondary septation, which, if disrupted, results in long-term adverse effects on lung development.
|
5 |
Long-term Changes in Alveolarization in the Postnatal Rat Following Transient Inhibition of Early "Classical" AlveologenesisLau, Mandy 06 April 2010 (has links)
Rationale: Activation of the platelet-derived growth factor receptors-α and -β (PDGF-Rα and -Rβ) is critical in the formation of secondary crests/septa during alveologenesis, and its regulation has been found to be disrupted in rat lung injury models.
Objective: To determine whether the process of secondary septation can occur after transient pharmacologic inhibition of PDGF-R action during postnatal days (P)1 – 7 in rats.
Hypothesis: The initial process of secondary crest formation is time-limited and, if missed, will result in a permanent loss of alveoli.
Methods: Imatinib mesylate, a PDGF-R inhibitor, was injected intraperitoneally from P1 – 7. Pups were sacrificed on P2, 4, 8, 14, 28 and 65 for studies of alveolar development.
Main results: The injection of imatinib inhibited PDGF-R action, resulting in a permanent decrease in alveolar number in treated rats.
Conclusions: Inhibition of secondary septation during the first 7 days of life resulted in a decrease in alveolar number lasting into early adult life. This is consistent with a critical time window for secondary septation, which, if disrupted, results in long-term adverse effects on lung development.
|
6 |
Characterization of NDR kinase signalling pathways during septum formation in Neurospora crassaHeilig, Yvonne 21 November 2013 (has links)
Die Zellteilung/Zytokinese ist ein grundlegender zellulärer Prozess und essentiell für das Wachstum von einzelligen und mehrzelligen Organismen. Reguliert wird dieser Prozess durch komplexe molekulare Mechanismen sowie einer Vielzahl von interaktiven Netzwerken. In Pilzen koordiniert eine Kinase-Kaskade, das Septierungs-Initiierungs Netzwerk (SIN) das Fortschreiten des Zellzyklus mit dem Beginn der Zellteilung und kontrolliert die Septenbildung. Fehlregulation des homologen Hippo Netzwerks in Tieren führt zu Gewebewucherungen und Tumorbildung, was die konservierte Bedeutung dieser Regulationsnetzwerke in verschiedenen Organismen unterstreicht. Obwohl die Septenbildung essentiell für das Wachstum und die Differenzierung von Schimmelpilzen ist, bleibt die Frage wie die Septierung reguliert wird und aus welchen Komponenten sich das SIN Netzwerk in filamentösen Pilzen zusammensetzt bisher noch unbeantwortet.
Mit Hilfe von in silico Analysen konnten homologe Proteine für fast alle SIN Netzwerk Komponenten im Modellorganismus Neurospora crassa identifiziert werden. Die Analyse dieser vorhergesagten SIN Komponenten ermöglichte die Charakterisierung der SIN-Kinase-Kaskade, bestehend aus CDC-7, SID-1 und DBF-2 sowie den entsprechenden, regulatorischen Untereinheiten CDC-14 und MOB-1. Es konnte gezeigt werden, dass DBF-2 durch SID-1 am hydrophoben Motiv phosphoryliert und aktiviert wird und dass eine SID-1 abhängige Stimulation von DBF-2 durch Zugabe von CDC-7 weiter gesteigert wird. Diese Daten liefern den ersten biochemischen Nachweis für die schrittweise Aktivierung einer dreistufigen SIN-Kinase-Kaskade in Pilzen. Es wurde weiterhin gezeigt, dass die gesamte SIN Kaskade konstitutiv und Zellzyklus unabhängig an den Spindelpolkörpern akkumuliert und dass alle SIN Proteine an kontrahierenden Septen lokalisieren. Demzufolge ist im Gegensatz zu den einzelligen Pilzen die Lokalisation und Aktivität der SIN Komponenten in Synzytium-bildenden Ascomyzeten Zellzyklus unabhängig. Darüber hinaus deutet die Charakterisierung von DBF-2 Mutanten, in denen die beiden regulatorischen Aminosäuren (Ser499 and Thr671) mutiert sind, darauf hin, dass ein dynamischer Phosphorylierungs-/Dephosphorylierungszyklus des Ser499 entscheidend für die Aktivität und Funktion von DBF-2 in N. crassa ist. Diese Daten haben Einfluss auf das allgemeine Verständnis der Aktivierung von NDR Kinasen, denn bisher wurde für NDR Kinasen höherer Eukaryonten eine folgegebundene Phosphorylierung beider regulatorischer Reste angenommen.
Der Ste20-verwandten Kinase MST-1 konnte eine Funktion als SIN-assoziierte Kinase, die parallel zu SID-1 agiert, zugeordnet werden. SID-1 und MST-1 werden auf entgegengesetzte Weise von der oberhalb agierenden SIN Kinase CDC-7 reguliert, was nahelegt, dass MST-1 für die Feinabstimmung des SIN erforderlich ist. Lifeact- und Formin-GFP Reporter Konstrukte zeigten, dass in der Δmst-1 Mutante abnormale, kortikale Actomyosin-Ringe gebildet werden, was eine Fehlpositionierung der Septen und die Bildung von unregelmäßigen Spiralen zur Folge hat. Diese Defekte entsprechen partiell jenen der MOR Mutanten. Diese Mutanten weisen ein defektes NDR Kinase Netzwerk auf, welches für das polare Wachstum verantwortlich ist (MOR). Es stellte sich heraus, dass MST-1 mit den zentralen MOR Kinasen POD-6 und COT-1 interagiert und sowohl die SIN Effektor Kinase DBF-2 als auch die MOR Effektor Kinase COT-1 aktiviert. Somit fungiert MST-1 als dual-spezifisches Enzym. Eine weitere Vernetzung beider Signalwege ist durch die Bildung von Heterodimeren gegeben.
Die in dieser Studie identifizierten verschiedenen Ebenen der Vernetzung des SIN und MOR, sowie entsprechende Daten aus anderen Modellorganismen wie S. pombe und D. melanogaster, lassen vermuten, dass antagonistische Interaktionen zwischen homologen NDR Kinase Netzwerken ein genereller Mechanismus zur Koordination beider Signalwege darstellt und auch in höheren Organismen konserviert ist.
Durch die Annotierung mehrerer Pilzgenome wurden zahlreiche Gene mit einer Homologie zu den S. cerevisiae BUD Genen auch in filamentösen Pilzen identifiziert. Epistatische und biochemische Analysen ergaben, dass das MOR Netzwerk als negativer Regulator der Septenbildung oberhalb des BUD komplex fungiert und dass COT-1 im Gegensatz zu DBF-2, die beiden Septierungsmarkerproteine BUD-3/BUD-4 phosphoryliert. Folglich könnte die Regulation von BUD-3 (und eventuell auch BUD-4) durch COT-1 ein Mechanismus des MOR Netzwerks sein, um die Septenbildung in N. crassa zu inhibieren.
|
7 |
Phosphorylation dependent stability control of the deneddylase DenA and its impact on Aspergillus nidulans developmentSchinke, Josua Sebastian 28 January 2016 (has links)
Zusammenfassung
Ein fehlerhafter Proteinabbau führt in höheren Eukaryoten zu diversen Krankheiten wie z.B. neurodegenerativen Störungen und Krebs. Es ist daher bedeutend die Regulationsmechanismen des Proteinabbaus zu verstehen. Intrazelluläre Proteine werden spezifisch durch das Ubiquitin-Proteasome System abgebaut. Cullin-RING Ligasen, welche durch das ubiquitin-ähnliche Protein Nedd8 aktiviert werden, binden und markieren das Zielprotein mit Ubiquitin. Diese ubiquitinierten Proteine werden durch das 26S Proteasome abgebaut. Die zwei Deneddylasen DenA und COP9 Signalosome (CSN) entfernen Nedd8 von unterschiedlichen Substraten.
Diese Arbeit zeigt im Modellorganismus Aspergillus nidulans, dass DenA aus einer Kernfraktion sowie einer dynamischen zytoplasmatischen Subpopulation besteht. Zudem wird (A) das Zusammenspiel zwischen DenA und CSN im Kern untersucht und (B) die bisher unbekannte Phosphatase DipA, welche an der Regulation des zytoplasmatischen DenA und an der Zelldifferenzierung beteiligt ist, charakterisiert. (A) Eine erhöhte DenA Konzentration kann teilweise das Fehlen eines aktiven CSN kompensieren, indem es der Akkumulation an neddylierten Proteinen und damit CSN assoziierten Entwicklungsstörungen entgegenwirkt. Beide pilzlichen Deneddylasen haben somit unterschiedliche aber auch überlappende Funktionen. Zusätzlich zeigt sich, dass die DenA Kernfraktion, welche mit dem CSN interagiert, in der pilzlichen Entwicklung durch fünf benachbarte CSN Untereinheiten destabilisiert wird. Da diese Untereinheiten eine funktionelle Oberfläche bilden ist anzunehmen, dass die Interaktion von DenA mit dieser Oberfläche wichtig für die Stabilitätskontrolle der DenA Kernsubpopulation ist.
(B) Zytoplasmatisches DenA wird zusammen mit DipA transportiert und akkumuliert an den Septen. Fehlt DipA erhöht sich die DenA Stabilität. Somit spielt DipA eine wichtige Rolle in der zytoplasmatischen DenA Stabilitätskontrolle. Zusätzlich führt das Fehlen von DipA zu einer erhöhten Septenbildung und Defekten in der lichtabhängigen Zellentwicklung des Pilzes. DipA wird somit, neben der DenA Stabilitätskontrolle, für die Zelldifferenzierung benötigt.
Die Stabilität der zwei DenA Subpopulationen wird zusätzlich durch Phosphorylierung reguliert. Während vegetativen Bedingungen wird DenA durch die Phosphorylierung von S243 und S245 stabilisiert, was für die Initiierung der nachfolgenden asexuellen Entwicklung wichtig ist. Anschließend wird DenA durch eine Änderung des Phosphorylierungsmusters destabilisiert und abgebaut. Zusammenfassend zeigt diese Studie Einblicke in komplexe Mechanismen des DenA Proteinabbaus, welche womöglich auch in höheren Eukaryoten relevant sind.
|
8 |
Influence Of FtsH Protease On The Medial FtsZ Ring In Escherichia ColiBhatt, Brijesh Narayan 08 1900 (has links) (PDF)
FtsH is an essential AAA family Zn++ metalloprotease of Escherichia coli, possessing ATPase-dependent chaperon activity and ATP-dependent protease activity. Heat shock transcription factor Sigma32, LpxC, SecY, and bacteriophage protein CII are some of the substrates of FtsH. Although FtsH is known to influence several cellular processes, the role of FtsH in bacterial cell division had not been identified. FtsZ is the principal cell division protein that marks the cell division site at mid-cell by forming a ring structure. Using a pair of ftsH-null and isogenic wild type strain of E. coli, earlier studies in the laboratory had demonstrated that proteolytic function of FtsH is required for the presence of FtsZ rings at mid-cell site. It was also shown that FtsZ is not a substrate for FtsH protease in vivo. In view of these observations, using a pair of ftsH-null and isogenic wild type strain of E. coli, experiments were carried out to find out the mechanism behind the requirement for FtsH protease for the presence of FtsZ ring at mid-cell site. Viability of the cells having ftsH-null status was maintained by a suppressor mutation at another locus, and was found to be comparable to that of isogenic wild type cells.
Immunostaining for FtsZ showed that only 20% cells of ftsH-null strain of E. coli has FtsZ ring at mid-cell site, On the contrary, more than 90% cells of isogenic wild type cells had FtsZ ring at mid-cell site. Live cell imaging with FtsZ-GFP also showed similar results. Low fraction of ftsH-null cells having FtsZ ring was found to be independent of slow growth rate of the cells. Confocal microscopy revealed that ftsH-null cells lacked the normal helical spiral-type structure of FtsZ, unlike the intact FtsZ helices present in isogenic wild type cells. FtsZ protein levels in the membrane and cytoplasmic fractions of ftsH-null cells were found to be same as those in the isogenic wild type cells. Exogenous expression of wild type FtsH in ftsH-null cells could restore FtsZ ring status to normalcy, similar to that in the isogenic wild type cells. However, this restoration could not be accomplished by FtsH mutants, which were lacking in ATP binding, ATPase, or protease activities.
FtsA anchors FtsZ to the membrane and a specific FtsZ/FtsA ratio is known to be critical for cell division. Further, FtsA and/or ZipA are required for the stabilisation of FtsZ ring at mid-cell site. The levels of FtsA were found to be lower by more than 2.5-fold in all the membrane and soluble fractions of ftsH-null cells. The levels of FtsA were found restored to normalcy upon complementation with exogenous expression of FtsH. Low levels of FtsA were not due to the slow growth of ftsH-null cells. Exogenous expression of FtsA or FtsA-GFP restored FtsZ in more than 90% of ftsH-null cells. Moreover, FtsA mutants, which are defective in the interaction with FtsZ, did not restore FtsZ rings to normalcy. The levels of ZipA were found to be same in ftsH-null and isogenic wild type cells. Expression of ZipA or ZipA-GFP could restore FtsZ rings to normalcy in ftsH-null cells. These data showed that low FtsA levels might be the reason for low percentage of cells having FtsZ ring in ftsH-null cells. It implied that ftsH-null cells might have been managing FtsZ ring stabilisation with ZipA, to facilitate septation.
Real time RT-PCR showed that the levels of ftsA mRNA and those of all the other fts genes, except ftsZ, in the 16-gene dcw cluster, were found to be low in ftsH-null cells. Moreover, real time RT-PCR using specific primers designed for multiple promoters of ftsZ and for the RNaseE processing site, just upstream of ftsZ, showed that the levels of transcripts of the genes upstream to RNaseE site were significantly low and that the levels of ftsZ transcripts, which were downstream to RNaseE site, were unaffected. On the contrary, the levels of mRNAs of fts genes, such as ftsE, ftsX, ftsN, and zipA that were located at another part of the genome, were normal in ftsH-null cells. These observations suggested that the reason for the low levels of FtsA protein might be low levels of ftsA mRNA. In addition, the low levels of other fts mRNAs from the dcw cluster, and probably of the respective proteins, might contribute to the slow growth of ftsH-null cells.
The ftsH null strains also showed less compact nucleoids and the nucleoids did not look bilobular. This data suggested that there may be some defect in the compaction of nucleoids in ftsH-null cells. On the contrary, isogenic wild type cells, when grown slow like the growth of ftsH-null cells, had no defect in nucleoid compaction and looked bilobular. The proper compaction of nucleoids could be restored only by wild type FtsH, but not by the protease mutant of FtsH. These observations suggest that proteolytic activity of FtsH might be required for the proper compaction of nucleoids, which in turn might have influence on the placement of FtsZ ring at mid-cell site.
In parallel, different percentage of silver stained single-dimension SDS-PAGE showed conspicuous difference in the protein profiles of the membrane and soluble fractions of ftsH-null cells, in comparison to those of isogenic wild type cells. FtsZ co-immuno precipitation (CoIP) of total cell lysates of ftsH-null and isogenic wild type cells showed differential interaction of two proteins, the outer membrane protein A (OmpA) and a 50 kDa protein, between the two strains. The level of OmpA was 2.5-fold high in ftsH-null cells, in comparison to that in isogenic wild type cells. However, overexpression of ompA in isogenic wild type cells did not have any effect on FtsZ rings in isogenic wild type cells. Two-dimensional gel electrophoresis for membrane and soluble fractions of ftsH-null cells, in comparison with that of isogenic wild type cells, showed that several proteins in each fraction were either present or absent between these two strains. Most of these proteins were then identified using MALDI-TOF / LC –MS methods. Identification of these proteins, which were present differentially between ftsH-null and isogenic wild type cells, has revealed existence of many more hitherto unidentified potential substrates of FtsH and therefore cell processes, which FtsH may influence.
|
9 |
Regulation of septum formation by RHO4 GTPase signalling in Neurospora crassa / Regulierung der Septenbildung in Neurospora crassa durch die RHO4 GTPaseJusta-Schuch, Daniela 30 April 2010 (has links)
No description available.
|
10 |
Lageentwicklung des Proepikards und des Mündungsabschnittes des Pulmonalvenenstammes bei Xenopus laevis / Topogenesis of the proepicardium and the mouth of the common pulmonary vein in the frog Xenopus laevisJahr, Maike 28 April 2010 (has links)
No description available.
|
Page generated in 0.0675 seconds