• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 10
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 50
  • 50
  • 23
  • 14
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Impacto do lançamento de lodo de tanques/fossas sépticas em estação de tratamento de esgoto com reator anaeróbio de fluxo ascendente e manta de lodo (UASB) / Impact of sludge disposal of septic tanks on wastewater treatment plant with upflow anaerobic sludge blanket (UASB)

Camila do Prado Gonçalves 31 October 2008 (has links)
Neste trabalho avaliou-se o desempenho de um reator anaeróbio de fluxo ascendente e manta de lodo (UASB) no tratamento combinado de esgoto sanitário com o lançamento de lodo proveniente de tanques sépticos. O estudo foi desenvolvido em escala plena na Estação de Tratamento de Esgoto (ETE) do Campus I da Universidade de São Paulo (USP) em São Carlos-SP. Foram utilizados dois reatores UASB com 18,8 m³ cada, um reator (UASB I) com função de controle e o outro reator (UASB II) no qual foi descarregado o lodo séptico. A pesquisa foi dividida em duas etapas: a primeira compreendeu o início de operação e o monitoramento dos reatores e, da segunda fez parte os ensaios de lançamento de lodo séptico no sistema. A partida foi efetuada sem utilização de inóculo e os reatores foram operados com tempo de detenção hidráulica médio (TDH) de 8 h, vazão afluente média de 2,35 m³/h e velocidade ascensional de 0,6 m/h. Em seis meses de operação os reatores apresentaram eficiências médias de remoção de DQO nos reatores UASB I e UASB II iguais a 49% e 65%. Quanto à remoção de sólidos os reatores UASB I e UASB II atingiram remoção de 36% e 37% para ST e de 67% e 63% para SST, respectivamente. Após esse período, deu-se início ao estudo que avaliou o impacto do lançamento de lodo séptico no UASB II. Foram realizados três ensaios com diferentes volumes de lodo (1; 3 e 5 m³) descarregados na forma de pulso com vazão média de 5,24 m³/h. Os lodos sépticos utilizados na pesquisa foram coletados por caminhões limpa-fossa e descarregados em um reservatório (15 m³) na ETE para posterior lançamento no reator UASB II. Foram feitas as caracterizações das amostras dos lodos sépticos (coletadas no ato da descarga em cada ensaio), com as quais pôde-se constatar a heterogeneidade da composição desse tipo de resíduo e sua viabilidade de pós-tratamento anaeróbio. Nos ensaios foram realizados monitoramentos temporais logo após a descarga de lodo para acompanhamento da resposta ao pulso de carga imposto. No geral, o reator UASB apresentou capacidade de degradar aproximadamente 2/3 da carga orgânica lançada com o lodo séptico. Os resultados são um indicativo de que a disposição de lodo sépticos em reatores UASB, quando bem programada, é uma solução viável e de grande importância para o tratamento dos resíduos provenientes de tanques/fossas sépticas. / The performance of upflow anaerobic sludge blanket (UASB) in the sanitary wastewater combined treatment with sludge disposal of septic tanks was evaluated in this work. The study was carried out (full scale) in the Wastewater Treatment Plant (WTP) located in campus I of the University of Sao Paulo (USP), city of Sao Carlos, State of Sao Paulo, Brazil. Two UASB reactors were used; volume of each reactor ~ 18,8 m³. UASB I was the control reactor, and UASB II was the reactor in which the septic sludge was disposed. The research was divided in two steps: the first one, which has taken into account the beginning of reactors operation and, the second one, in which occurred the disposal of septic sludge in the reactors. The start-up was carried out without utilization of inoculums. Reactors were operated with an average hydraulic retention time of 8 hours, average influent flow rate of 2.35 m³/h, and upflow velocity of 0.6 m/h. In six months, reactors presented average removal efficiencies of COD in UASB I and UASB II of 48% and 65%, respectively. Concerning to the solid removal, UASB I and UASB II have achieved removal of 36% and 37% for TS, and 67% and 63% for TSS, respectively. After this period of time, the evaluation of disposal impact of septic sludge was started in UASB II. Three essays with different sludge volume (1, 3, and 5 m³) were carried out; sludge volume was disposed in a pulse way with average flow rate of 5.24 m³/h. Septic sludge utilized in the research was collected by clean septic tank trucks, and disposed in a reservoir (volume of 15 m³) in WTP, in order to allow further disposal in the UASB II. By the hand of characterization of septic sludge samples (collected when disposal was carried out), it was possible to verify the heterogeneity about composition of this kind of waste and its availability in terms of anaerobic post-treatment. Temporal monitoring after the sludge disposal was carried out in order to allow the accompaniment of results provided by the pulse. In general, UASB reactor presented capacity in terms of degradation of approximately 2/3 of the organic load disposed with septic sludge. The results are a good indicative that the disposal of septic sludge in UASB reactors is a viable solution, and it is very important for the treatment of wastes from septic tanks.
42

Developing an integrated concept for sewage sludge treatment and disposal from municipal wastewater treatment systems in (peri-)urban areas in Vietnam

Karius, Ralf 06 July 2011 (has links)
The study took place in Vietnam at Hanoi University of Science in the framework of the DAAD (German Academic Exchange Service) – “An advancement of the German-Vietnamese University partnerships”. The research has been supported by the program: “Wastewater and Solid Waste Management in Provincial Centers” and belongs to its technical component. The present diploma thesis elaborates the current situation of sewage sludge management in Vietnam and is dealing with sludge characteristics from both domestic sewage treatment facilities and septic tanks. During the research, different treatment components and treatment facilities have been analyzed to carry out a comprehensive survey of sewage sludge types. In this thesis, a guideline (draft) was developed as a main result, which can be helpful to bridge the legislative gap for sewage sludge re-use in Vietnam. In conclusion, an integrated concept has been developed, which recommends the application of selected proceeding elements to treat sewage sludge and the further utilization of re-useable materials in agriculture in a controlled and environmentally-safe manner.:Abbreviations .......................................................................................................................... 4 List of Figures ......................................................................................................................... 5 List of Tables .......................................................................................................................... 6 Acknowledgement .................................................................................................................. 7 Abstract .................................................................................................................................. 8 1 Introduction ................................................................................................................... 10 2 Legal framework for sewage sludge management in Vietnam ................................. 13 2.1 Background ........................................................................................................... 13 2.2 Institutional framework .......................................................................................... 13 2.3 Legal framework.................................................................................................... 15 2.4 Standards .............................................................................................................. 18 2.4.1 Technical standards ...................................................................................... 18 2.4.2 National standards ........................................................................................ 19 2.5 Current situation .................................................................................................... 20 3 Theoretical basis for the concept ................................................................................ 22 3.1 Sewage sludge ...................................................................................................... 23 3.1.1 Sewage sludge types .................................................................................... 27 3.1.2 Quantity .......................................................................................................... 30 3.1.3 Sludge volume ............................................................................................... 30 3.1.4 Sludge composition ....................................................................................... 34 4 Municipal wastewater treatment plants ...................................................................... 47 4.1 DEWATS ............................................................................................................... 47 4.2 Waste water management program .................................................................... 48 4.2.1 Results of sludge analysis ............................................................................ 50 4.3 Learned outcomes ................................................................................................ 54 5 Sludge treatment and disposal options ...................................................................... 56 5.1 Goals of sludge treatment .................................................................................... 56 5.2 Processing elements ............................................................................................ 58 5.2.1 Pre-treatment ................................................................................................. 59 5.2.2 Transportation................................................................................................ 60 5.2.3 Stabilization.................................................................................................... 60 5.2.4 Disinfection .................................................................................................... 65 5.2.5 Removal of water .......................................................................................... 65 5.2.6 Drying ............................................................................................................. 70 5.2.7 Agricultural uses and landscape measures ................................................ 70 5.2.8 Biological re-uses .......................................................................................... 71 5.2.9 Thermal disposal (energy recovery) ............................................................ 74 5.2.10 Land-filling ...................................................................................................... 76 6 Sewage sludge management concept ....................................................................... 78 6.1 Avoidance .............................................................................................................. 79 6.2 Treatment .............................................................................................................. 79 6.2.1 Proposed treatment concept ........................................................................ 81 6.3 Re-use or Disposal ............................................................................................... 84 6.3.1 Small-scale concept ...................................................................................... 85 6.3.2 Medium- and large-scale concept ................................................................ 85 6.4 Conclusion ............................................................................................................. 86 7 Guideline (draft) ............................................................................................................ 88 7.1 Formulation of a guidance document .................................................................. 88 8 Conclusion .................................................................................................................... 89 9 References .................................................................................................................... 92 10 Appendices ................................................................................................................ 97 a) Calculation of sludge amount .................................................................................. 97 b) Guideline (draft) ........................................................................................................ 99 Declaration .......................................................................................................................... 106 / Die Diplomarbeit wurde im Rahmen des Deutsch-Vietnamesischem Auslandsaustauschprogramms an der „Hanoi University of Science“ verfasst. Dieses Vorhaben wurde unterstützt von dem DAAD (Deutschen Akademischen Austausch Dienst), und ist im technischem Bereich des Programms “Wastewater and Solid Waste Management in Provincial Centers“ einzugliedern. Die vorstehende Diplomarbeit beschäftigt sich mit dem aktuellen Klärschlammmanagement in Vietnam und liefert dabei detaillierte Resultate zu verschiedenen Klarschlammtypen aus kommunalen Abwasserbehandlungsanlagen. Bei den Untersuchungen wurden verschiedene Abwasser- und Klärschlammbehandlungsanlagen untersucht, um einen Überblick zu den gebräuchlichen Behandlungsmethoden in Vietnam zu erarbeiten. Zusätzlich wurden die institutionellen und rechtlichen Rahmenbedingungen überprüft. Der Entwurf einer Verordnung zur Verwertung von Klärschlamm in der Landwirtschaft wurde vorgelegt, um eine bestehende rechtliche Lücke in Vietnam zu schließen. Mit dieser Arbeit wurde ein integriertes Konzept entwickelt, welches mittels verschiedene verfahrenstechnische Elemente den Klärschlamm behandelt und darauffolgend das verwertbare Material in ausgewählten landwirtschaftlichen Flächen in einer kontrollierten und umweltschonenden Weise verwertet.:Abbreviations .......................................................................................................................... 4 List of Figures ......................................................................................................................... 5 List of Tables .......................................................................................................................... 6 Acknowledgement .................................................................................................................. 7 Abstract .................................................................................................................................. 8 1 Introduction ................................................................................................................... 10 2 Legal framework for sewage sludge management in Vietnam ................................. 13 2.1 Background ........................................................................................................... 13 2.2 Institutional framework .......................................................................................... 13 2.3 Legal framework.................................................................................................... 15 2.4 Standards .............................................................................................................. 18 2.4.1 Technical standards ...................................................................................... 18 2.4.2 National standards ........................................................................................ 19 2.5 Current situation .................................................................................................... 20 3 Theoretical basis for the concept ................................................................................ 22 3.1 Sewage sludge ...................................................................................................... 23 3.1.1 Sewage sludge types .................................................................................... 27 3.1.2 Quantity .......................................................................................................... 30 3.1.3 Sludge volume ............................................................................................... 30 3.1.4 Sludge composition ....................................................................................... 34 4 Municipal wastewater treatment plants ...................................................................... 47 4.1 DEWATS ............................................................................................................... 47 4.2 Waste water management program .................................................................... 48 4.2.1 Results of sludge analysis ............................................................................ 50 4.3 Learned outcomes ................................................................................................ 54 5 Sludge treatment and disposal options ...................................................................... 56 5.1 Goals of sludge treatment .................................................................................... 56 5.2 Processing elements ............................................................................................ 58 5.2.1 Pre-treatment ................................................................................................. 59 5.2.2 Transportation................................................................................................ 60 5.2.3 Stabilization.................................................................................................... 60 5.2.4 Disinfection .................................................................................................... 65 5.2.5 Removal of water .......................................................................................... 65 5.2.6 Drying ............................................................................................................. 70 5.2.7 Agricultural uses and landscape measures ................................................ 70 5.2.8 Biological re-uses .......................................................................................... 71 5.2.9 Thermal disposal (energy recovery) ............................................................ 74 5.2.10 Land-filling ...................................................................................................... 76 6 Sewage sludge management concept ....................................................................... 78 6.1 Avoidance .............................................................................................................. 79 6.2 Treatment .............................................................................................................. 79 6.2.1 Proposed treatment concept ........................................................................ 81 6.3 Re-use or Disposal ............................................................................................... 84 6.3.1 Small-scale concept ...................................................................................... 85 6.3.2 Medium- and large-scale concept ................................................................ 85 6.4 Conclusion ............................................................................................................. 86 7 Guideline (draft) ............................................................................................................ 88 7.1 Formulation of a guidance document .................................................................. 88 8 Conclusion .................................................................................................................... 89 9 References .................................................................................................................... 92 10 Appendices ................................................................................................................ 97 a) Calculation of sludge amount .................................................................................. 97 b) Guideline (draft) ........................................................................................................ 99 Declaration .......................................................................................................................... 106
43

AVALIAÇÃO DO PROCESSO DE CO-COMPOSTAGEM DE LODO DE TANQUE SÉPTICO UNIFAMILIAR E RESÍDUOS SÓLIDOS ORGÂNICOS

Medeiros, Angela Carolina de 18 August 2009 (has links)
Made available in DSpace on 2015-09-25T12:23:38Z (GMT). No. of bitstreams: 1 Angela Carolina de Medeiros.pdf: 816809 bytes, checksum: ac7c00cad843d88070dc5e748e2319ca (MD5) Previous issue date: 2009-08-18 / This study had the object of evaluating the influence of the frequency of aeration and the quantity of structural material in the process of co-composting of sludge from house septic tanks with residual organic solids. The research was carried out at the Experimental Station for the Biological Treatment of Sewage (EXTRABES), in the city Campina Grande, Paraiba during the period from August 2008 to July 2009. To mount the experimental system of co-composting sludge was collected from the house septic tanks in the district of Malhada da Roça, in the small town of São João do Cariri, situated in the semi-arid region of the state of Paraiba. The residual organic solids were collected from the Paraiba Company for Food and Agricultural Services (EMPASA), Campina Grande, PB. The experimental system comprised a new treatment of co-composting of sludge from house septic tanks with residual organic solids using a process of turning over, with a frequency of 1, 2 and 3 times per week with proportions of porous material of 4 and 8%. The monitoring period was for 112 days and weekly samples were collected for physic-chemical analysis and parasite counts. The turning frequency did not have a significant effect on the transformation of total volatile solids during the treatment period. The quantity of added structural material directly influenced the efficiency of the transformation of dry mass which was inversely proportional to the percentage of structural material added. The process of co-composting showed efficient removal of helminthes eggs. The compost produced met the legal requirements in relation to the quantities of macronutrients. The efficiency of the co-composting system showed two distinct phases: namely rapid during the first 35 days and a slow subsequent phase. The kinetic constants for biodegradation were determined from adjusted exponential equations, and showed higher values during the rapid phase and values approximately ten times lower during for the slow phase. / O trabalho teve objetivo de avaliar a influência da freqüência de aeração e quantidade de estruturante no processo de co-compostagem de lodo de tanque séptico unifamiliar e resíduos sólidos orgânicos. A pesquisa foi realizada na Estação Experimental de Tratamento Biológico de Esgoto (EXTRABES), na cidade de Campina Grande-PB, durante o período de Agosto de 2008 a Julho de 2009. Para a montagem do sistema experimental de co-compostagem foram coletados lodos de tanques sépticos unifamiliar no distrito de Malhada da Roça, Município de São João do Cariri, localizado no semi-árido paraibano. Os resíduos sólidos orgânicos foram coletados na Empresa Paraibana de Alimentos e Serviços Agrícolas (EMPASA), Campina Grande-PB. O sistema experimental foi constituído de nove tratamentos de co-compostagem de lodo de tanque séptico unifamiliar e resíduos sólidos orgânicos, realizando o processo de reviramento com freqüência de uma, duas e três vezes por semana e percentagem de estruturante de 0, 4 e 8%. O monitoramento do sistema experimental foi realizado durante 112 dias, e semanalmente eram coletadas amostras para realização de análises físico-químicas e parasitológicas. A freqüência de reviramento não apresentou influência significativa na transformação de STV nos tratamentos estudados. O material estruturante influenciou diretamente no processo, de modo que o comportamento da eficiência de transformação de massa seca foi inversamente proporcional ao percentual de estruturante. O processo de cocompostagem mostrou-se eficiente na remoção de ovos de helmintos. O adubo produzido atendeu aos requisitos da legislação, com relação à quantidade de macronutrientes. O desempenho do sistema de co-compostagem permitiu visualizar duas fases distintas: rápida nos primeiros 35 dias e fase lenta nos dias subsequentes. As constantes cinéticas de biodegradação foram determinadas a partir de equações exponenciais ajustadas, apresentando valores maiores na fase rápida, e valor aproximadamente dez vezes menor na fase lenta.
44

Caracterização e pré-tratamento de lodo de fossas e de tanques sépticos / Characterization and treatment of sludge originated from septic tanks

Borges, Nayara Batista 27 November 2009 (has links)
Fossas e tanques sépticos são sistemas de pequeno porte utilizados para tratamento parcial do esgoto sanitário produzido nas áreas urbana e rural, quando não beneficiados por sistema de esgotamento sanitário. Tal utilização se justifica principalmente por ser tecnologia que não exige muita dedicação operacional e ser de simples implantação. Apesar da vasta utilização dessas unidades no Brasil, há pouca informação sobre a caracterização, as condições de coleta, transporte, tratamento e destino final de resíduo (lodo) produzido nesses sistemas. Nesse sentido, o presente trabalho tem como objetivo a caracterização do lodo produzido nessas unidades; e, também, a concepção, o desenvolvimento e a avaliação de uma unidade piloto para pré-tratamento de lodo de fossas e tanques sépticos. Essa unidade, constituída por grade, desarenador e flotador, foi instalada no Campus da Universidade de São Paulo, junto da Estação de Tratamento de Esgoto do Campus - área 1, e vista à remoção de sólidos grosseiros, areia e materiais flutuantes, antes de seu lançamento na Estação de Tratamento de Esgoto do Campus. Foi feita a caracterização do lodo de tanques sépticos coletado in situ e do lodo proveniente dos caminhões limpa-fossas, descarregando em tanque pulmão de 15000 litros. A caracterização do lodo proveniente dos caminhões limpa-fossas foi realizada em duas campanhas (coletas), sendo uma feita na primeira visita ao local pré-definido, e outra realizada aproximadamente seis meses após a primeira coleta. Com intuito de aprimorar o método de análise das amostras do lodo in situ, com finalidade de melhor fragmentar o material particulado, foi testado o uso de ultrassom. Também, foi realizada a caracterização do lodo de fossas e tanques sépticos na Central de Recebimento de Resíduos na cidade de Campinas-SP - SANASA - Sociedade de Abastecimento de Água e Saneamento AS. Para tanto, foram coletadas amostras compostas de lodo descarregado por 24 caminhões. Foi feito teste complementar, com a finalidade de estudar a degradação do lodo flotado por processos anaeróbio e aeróbio. Mediante essas caracterizações pode-se constatar a grande heterogeneidade da composição do lodo e a elevada carga orgânica, que devem ser ponderados com relação a impactos no meio ambiente e em Estações de Tratamento de Esgoto. Contudo, nota-se a importância do pré-tratamento desse lodo antes de ser lançado em ETEs. A unidade piloto foi operada com diferentes taxas de aplicação superficial (80; 110; 140 e 200 \'M POT.3\'/\'M POT.2\'.dia), quando foram obtidas remoções de 91,7% de sólidos suspensos; 89,3% de DQO e 81,9% de óleos e graxas. Pelos resultados obtidos foi demonstrada a eficiência do sistema de flotação na remoção de óleos e graxas e dos sólidos suspensos. A digestão aeróbia do lodo flotado mostrou-se eficiente quando foi aplicado inócuo com período de aeração superior a 20 dias, sendo que foram obtidas eficiências de 88,3% e 90% para remoção de DQO e de óleos e graxas, respectivamente. / Septic tanks are small structures used for partial treatment of wastewater produced from urban and rural areas. It utilization is justify mainly by simplicity of construction and for being a technology that requires low operational dedication. Although it is a technology vastly used in Brazil, there is not much information about the characteristics of the waste dumped in there, and the conditions of collection, transport, and final destination of the sludge generated in the system. The objective of this research was characterize the sludge originated from septic tanks and to design, construct and evaluate a treatment unit model to be used for prior treatment of the sludge generated in those septic tanks. This unit, composed by a sieve, a degritter, and a flotation device, was assembled in the São Paulo University Campus, near the area 1 from the campus Wasterwater Treatment Plant (WWTP). It had the purpose to remove har solid particle, sand and the floating material before their entry in the Wasterwater Treatment Plant. Was made to characterize the sludge septic tank collected in situ and the sludge originated from the Septic Pumper Truck, unloaded into a tank of 15000 L. Furthermore, the characterization of the sludge originated from the Septic Pumper Truck was performed twice, once in the material collected in the first visit to the defined location and the other in the material collected about six months after the first collection. The use of ultrasound was tested to ameliorate the fragmentation of the particulate material and to improve the method of analysis of the sludge in situ. Additionally, it was characterized the sludge from septic tanks in the Waste Reception Center from the city of Campinas, São Paulo State - SANASA - Society of Water Supply and Sanitation in composite samples collected from 24 trucks during the unloading. Septic Pumper Truck in th Waste Receptation Center. A complementing test was performed in order to text the degradation of the floated sludge by anaerobic and aerobic processes. The characterizations revealed a great heterogeneity in the composition of the sludge and the high organic content, which should be taken in consideration regarding the impacts in the environment and in the WWTP. This underlines the importance of treatment of the sludge prior to discharging into the WWTP. The pilot plant was managed to work at different rates of surface sludge application (80, 110, 140 and 200 \'M POT.3\'/\'M POT.2\'.day). The 110 \'M POT.3\'/\'M POT.2\'.day rate displayed the highest efficiency with the removal of 91.7% of suspended solids, 89.3% of the chemical oxygen demand, and 81 9% of oils and waxes. The results showed the efficiency of the flotation system in the removal of suspended solids, oil and greases. The aerobic digestion of the floated material was efficient when it received inoculation with aeration period greater than 20 days, which allowed CDO the removal of 88.3% and 90% of oil and greases.
45

Caracterização e pré-tratamento de lodo de fossas e de tanques sépticos / Characterization and treatment of sludge originated from septic tanks

Nayara Batista Borges 27 November 2009 (has links)
Fossas e tanques sépticos são sistemas de pequeno porte utilizados para tratamento parcial do esgoto sanitário produzido nas áreas urbana e rural, quando não beneficiados por sistema de esgotamento sanitário. Tal utilização se justifica principalmente por ser tecnologia que não exige muita dedicação operacional e ser de simples implantação. Apesar da vasta utilização dessas unidades no Brasil, há pouca informação sobre a caracterização, as condições de coleta, transporte, tratamento e destino final de resíduo (lodo) produzido nesses sistemas. Nesse sentido, o presente trabalho tem como objetivo a caracterização do lodo produzido nessas unidades; e, também, a concepção, o desenvolvimento e a avaliação de uma unidade piloto para pré-tratamento de lodo de fossas e tanques sépticos. Essa unidade, constituída por grade, desarenador e flotador, foi instalada no Campus da Universidade de São Paulo, junto da Estação de Tratamento de Esgoto do Campus - área 1, e vista à remoção de sólidos grosseiros, areia e materiais flutuantes, antes de seu lançamento na Estação de Tratamento de Esgoto do Campus. Foi feita a caracterização do lodo de tanques sépticos coletado in situ e do lodo proveniente dos caminhões limpa-fossas, descarregando em tanque pulmão de 15000 litros. A caracterização do lodo proveniente dos caminhões limpa-fossas foi realizada em duas campanhas (coletas), sendo uma feita na primeira visita ao local pré-definido, e outra realizada aproximadamente seis meses após a primeira coleta. Com intuito de aprimorar o método de análise das amostras do lodo in situ, com finalidade de melhor fragmentar o material particulado, foi testado o uso de ultrassom. Também, foi realizada a caracterização do lodo de fossas e tanques sépticos na Central de Recebimento de Resíduos na cidade de Campinas-SP - SANASA - Sociedade de Abastecimento de Água e Saneamento AS. Para tanto, foram coletadas amostras compostas de lodo descarregado por 24 caminhões. Foi feito teste complementar, com a finalidade de estudar a degradação do lodo flotado por processos anaeróbio e aeróbio. Mediante essas caracterizações pode-se constatar a grande heterogeneidade da composição do lodo e a elevada carga orgânica, que devem ser ponderados com relação a impactos no meio ambiente e em Estações de Tratamento de Esgoto. Contudo, nota-se a importância do pré-tratamento desse lodo antes de ser lançado em ETEs. A unidade piloto foi operada com diferentes taxas de aplicação superficial (80; 110; 140 e 200 \'M POT.3\'/\'M POT.2\'.dia), quando foram obtidas remoções de 91,7% de sólidos suspensos; 89,3% de DQO e 81,9% de óleos e graxas. Pelos resultados obtidos foi demonstrada a eficiência do sistema de flotação na remoção de óleos e graxas e dos sólidos suspensos. A digestão aeróbia do lodo flotado mostrou-se eficiente quando foi aplicado inócuo com período de aeração superior a 20 dias, sendo que foram obtidas eficiências de 88,3% e 90% para remoção de DQO e de óleos e graxas, respectivamente. / Septic tanks are small structures used for partial treatment of wastewater produced from urban and rural areas. It utilization is justify mainly by simplicity of construction and for being a technology that requires low operational dedication. Although it is a technology vastly used in Brazil, there is not much information about the characteristics of the waste dumped in there, and the conditions of collection, transport, and final destination of the sludge generated in the system. The objective of this research was characterize the sludge originated from septic tanks and to design, construct and evaluate a treatment unit model to be used for prior treatment of the sludge generated in those septic tanks. This unit, composed by a sieve, a degritter, and a flotation device, was assembled in the São Paulo University Campus, near the area 1 from the campus Wasterwater Treatment Plant (WWTP). It had the purpose to remove har solid particle, sand and the floating material before their entry in the Wasterwater Treatment Plant. Was made to characterize the sludge septic tank collected in situ and the sludge originated from the Septic Pumper Truck, unloaded into a tank of 15000 L. Furthermore, the characterization of the sludge originated from the Septic Pumper Truck was performed twice, once in the material collected in the first visit to the defined location and the other in the material collected about six months after the first collection. The use of ultrasound was tested to ameliorate the fragmentation of the particulate material and to improve the method of analysis of the sludge in situ. Additionally, it was characterized the sludge from septic tanks in the Waste Reception Center from the city of Campinas, São Paulo State - SANASA - Society of Water Supply and Sanitation in composite samples collected from 24 trucks during the unloading. Septic Pumper Truck in th Waste Receptation Center. A complementing test was performed in order to text the degradation of the floated sludge by anaerobic and aerobic processes. The characterizations revealed a great heterogeneity in the composition of the sludge and the high organic content, which should be taken in consideration regarding the impacts in the environment and in the WWTP. This underlines the importance of treatment of the sludge prior to discharging into the WWTP. The pilot plant was managed to work at different rates of surface sludge application (80, 110, 140 and 200 \'M POT.3\'/\'M POT.2\'.day). The 110 \'M POT.3\'/\'M POT.2\'.day rate displayed the highest efficiency with the removal of 91.7% of suspended solids, 89.3% of the chemical oxygen demand, and 81 9% of oils and waxes. The results showed the efficiency of the flotation system in the removal of suspended solids, oil and greases. The aerobic digestion of the floated material was efficient when it received inoculation with aeration period greater than 20 days, which allowed CDO the removal of 88.3% and 90% of oil and greases.
46

Nakládání s odpadními vodami v obci Sudice / Wastewater management in the village Sudice

Hoferková, Lenka January 2018 (has links)
This thesis is written due to the poor quality of the stream Sudický potok and the fish kills in nearby ponds supplied by the stream. The goal is evaluating the results of the water samples obtained from the four local spots. Polluted quality in the stream in the Sudice town then proceed to design three various solutions of the sewage collection systems. The first option is designing the municipal wastewater treatment plant and the draining wastewater by single sewerage or sanitary sewerage. The second choice designs the domestic waste water treatment plants. The third solution is designing the sanitary sewerage and effluent sewerage to the nearby waste water treatment plant in Šebetov town. All variants are economically evaluated. In conclusion the first solution, municipal waste water treatment plant with the single sewerage, is recommended.
47

Latrine coverage and use in the Limpopo Province of South Africa

Rikhotso, Mpumelelo Casper 05 1900 (has links)
MSc (Microbiology) / Department of Microbiology / See the attached abstract below
48

Groundwater Contamination in the Cortaro Area, Pima County, Arizona

Schmidt, Kenneth D. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / High concentrations of nitrate have been found in water samples from irrigation wells north of the Tucson Arizona sewage treatment plant. The plant, which had primary treatment prior to 1951, produced 2,800 acre-feet of effluent in 1940, 4,600 acre-feet in 1950, 16,300 acre-feet in 1960, and 33,000 acre-feet in 1970. Large amounts of treated effluent recharge the groundwater system north of the plant. Sources of nitrate contamination beside sewage effluent may be sewage lagoons, sanitary landfills, meat packing and dairy effluent, septic tanks, and agricultural runoff. Sewage effluent is considered to be the primary source of nitrate contamination in the area. Geologic and flow net analysis indicate that aquifer conditions minimize the effects of sewage effluent contamination. Chloride and nitrate migration appears to be similar in the aquifer. Large-capacity wells were sampled to reflect regional conditions, and chemical hydrographs of chloride and nitrate were analyzed. The seasonal nature of these hydrographs patterns depend on total nitrogen in sewage effluent. Management alternatives are suggested to decrease nitrate pollution by sewage effluent.
49

The Effect of Development on Groundwater in the Parker Strip

Everett, L. G., Schultz, T. R. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / The 14.6 miles of the Colorado River bounded by Parker Dam and Headgate Rock Dam has been referred to as the Parker Strip. This river reach has become a high use recreation area during the past decade with 4,000 permanent residents and as many as 120,000 water enthusiasts on long weekends. The riparian area of the river is heavily clustered with mobile homes, marinas and public beaches. The means of sewage disposal is exclusively via septic tanks. Recent surveys by the Environmental Protection Agency, Arizona State Department of Public Health and the University of Arizona have localized surface water bacteria levels that may indicate a developing groundwater problem. The geohydrology of the area indicates that the septic tanks are located in Post -Pliocene Colorado River deposits. The deposits are quite thin and relatively narrow. Since the deposits are locally derived sands and gravels, the horizontal hydraulic conductivities are such that a relatively short flow time to the river may result. Intensive evaluation of the degradation of the water quality in these deposits is needed to determine if the ground water supply was jeopardized by septic tank systems.
50

Water Quality Problem of the Urban Area in an Arid Environment, Tucson, Arizona

Hansen, G. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / The U.S. Environmental Protection Agency 's two-year 208 area-wide Water Quality Management Study for Pima County, Arizona, is discussed in terms of the specific problems of municipal wastewater effluent, industrial wastewater, urban stormwater runoff, land disposal of residual wastes, septic systems, and construction activities related to the City of Tucson urban area. The primary groundwater and the slow cycling of the hydrologic system in this arid urban environment reduce many water pollution problems to insignificant levels in the short term, (2) there does exist significant long-term pollution problems in the area. These problems include urban stormwater runoff and landfill leachate, and are related to the pollution of groundwater recharge and aquifer water supplies, and (3) there is a strong need for total water resource planning in arid urban areas which includes planning for wastewater reuse, water harvesting, and proper management of groundwater recharge systems.

Page generated in 0.0554 seconds