• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Septina de Chlamydomonas reinhardtii: estudos com foco em sua expressão e função / Septin of Chlamydomonas reinhardtii: studies focused on its expression and function

Ciol, Heloísa 03 May 2017 (has links)
Septinas fazem parte de uma família de proteínas de ligação ao nucleotídeo guanina e já foram encontradas em diversos eucariontes, mas nunca em plantas. Essas proteínas têm sido descritas como atuantes na citocinese, estruturação celular e exocitose, mas pouco se conhece do seu modo de ação. Além disso, as septinas mostraram-se capazes de se polimerizar em heterofilamentos altamente organizados, a partir da interação com outras septinas, mas as referências à existência e funcionalidade de homofilamentos de septinas permanecem escassas e controversas. Este trabalho visou caracterizar a função da septina da alga unicelular Chlamydomonas reinhardtii, um eucarionte modelo que divergiu há muito de um ancestral comum a plantas e metazoários, e que possui uma única septina, diferente dos demais eucariontes estudados até o momento. Para tal, foram realizados ensaios de duplo híbrido para detecção de possíveis proteínas parceiras à septina de C. reinhardtii, além de análise de expressão gênica em diferentes pontos do ciclo celular por PCR quantitativo (qPCR), silenciamento gênico por micro-RNA artificial de interferência e imunolocalização por microscopia confocal. Os ensaios de duplo híbrido retornaram duas possíveis proteínas parceiras de interação à septina de Chalmydomonas reinhardtii (CrSept) – S-Adenosyl-Homocysteine-Hydrolase (CrSAHH) e Subtilase-like-Serino-Protease (esporangina) – ambas relacionada à estrutura flagelar. A interação entre CrSept e CrSAHH não foi validada através das técnicas de pulldown e crosslinking, porém, os experimentos de imunolocalização da proteína in situ mostraram uma grande concentração de CrSept na base flagelar durante as fases G0, e G1, com mudança no perfil de localização para o citoplasma durante as fases S e M do ciclo celular, evidenciando uma participação da septina na estrutura flagelar e não excluindo a possibilidade de uma interação in vivo entre CrSept e CrSAHH. Análises do nível de expressão gênica de CrSept mostraram uma tendência de maior expressão do gene da septina durante o período claro, com redução na fase escura do ciclo celular, resultados que se assemelham aos observados pela análise qualitativa, por western blot, da expressão da proteína ao longo do ciclo celular. Os experimentos de silenciamento gênico, por fim, mostraram um possível fenótipo relacionado à redução de mRNA de CrSept, não observado no grupo controle. Estes resultados mostram que a CrSept possui caráter estrutural na alga verde C. reinhardtii, podendo atuar como suporte para outras proteínas durante a fase de crescimento celular. Além disso, localizações pontuais por toda a célula durante a fase de divisão celular sugerem que a CrSept desempenha um importante papel na manutenção da estrutura celular para a conclusão da divisão celular. / Septins belong to a family of proteins that bind guanine nucleotide and have been found in many eukaryotes, but never in plants. These proteins have been described in cytokinesis process, cell structure and exocytosis, but little is known about their way of action. Besides, septins are capable of polymerize in high organized heterofilaments when interacting with other septins, but references and functional studies of septins homofilaments remain controversial. This work aimed to characterize the function of the unique septin from the green alga Chlamydomonas reinhardtii, a model eukaryote organism that long diverged from a common ancestor to plants and Metazoans and that has a single septin. For that, yeast two-hybrid assays were conducted in search of possible partner proteins to C.reinhardtii, septin (CrSept); also, gene expression analyses by qPCR of different points of the cell cycle helped characterize the expression profile of the CrSept gene and gene silencing by artificial micro-RNA (amiRNA) and immunolocalization by confocal microscopy were used to enrich functional and localization studies. The yeast two-hybrid assays returned two possible partner proteins to CrSept - S-Adenosyl-Homocysteine-Hydrolase (CrSAHH) e Subtilase-like-Serino-Protease (sporangin) – both related to the flagella structure. The interaction among CrSept and CrSAHH could not be validated in vitro by pulldown or crosslink assays, however, the in situ immunostaining showed CrSept can mostly be found in punctual concentrated spots close to the base of the flagella during G0 and G1 phases of the cell cycle, which differs from the profile observed during phases S and M, where the protein can be observed as punctual spots through the whole cell. These results strengths CrSept role on the flagellar structure and do not exclude the possibility of an in vivo interaction between CrSept and CrSAHH. Gene expression analyses showed that septin is mostly expressed during the light part of the cycle, which is also observed at the protein quantitative analysis by western blot. Gene silencing experiments showed a possible phenotype in clones expressing amiRNA against CrSept, which was not observed on control group. Together, these results suggest CrSept has a structural role in C. reinhardtii and might work as a scaffold to other proteins during cell growth stage. Besides, punctual staining observed during mitosis suggests CrSept might help maintaining cell structure until cell division is completed.
2

Septina de Chlamydomonas reinhardtii: estudos com foco em sua expressão e função / Septin of Chlamydomonas reinhardtii: studies focused on its expression and function

Heloísa Ciol 03 May 2017 (has links)
Septinas fazem parte de uma família de proteínas de ligação ao nucleotídeo guanina e já foram encontradas em diversos eucariontes, mas nunca em plantas. Essas proteínas têm sido descritas como atuantes na citocinese, estruturação celular e exocitose, mas pouco se conhece do seu modo de ação. Além disso, as septinas mostraram-se capazes de se polimerizar em heterofilamentos altamente organizados, a partir da interação com outras septinas, mas as referências à existência e funcionalidade de homofilamentos de septinas permanecem escassas e controversas. Este trabalho visou caracterizar a função da septina da alga unicelular Chlamydomonas reinhardtii, um eucarionte modelo que divergiu há muito de um ancestral comum a plantas e metazoários, e que possui uma única septina, diferente dos demais eucariontes estudados até o momento. Para tal, foram realizados ensaios de duplo híbrido para detecção de possíveis proteínas parceiras à septina de C. reinhardtii, além de análise de expressão gênica em diferentes pontos do ciclo celular por PCR quantitativo (qPCR), silenciamento gênico por micro-RNA artificial de interferência e imunolocalização por microscopia confocal. Os ensaios de duplo híbrido retornaram duas possíveis proteínas parceiras de interação à septina de Chalmydomonas reinhardtii (CrSept) – S-Adenosyl-Homocysteine-Hydrolase (CrSAHH) e Subtilase-like-Serino-Protease (esporangina) – ambas relacionada à estrutura flagelar. A interação entre CrSept e CrSAHH não foi validada através das técnicas de pulldown e crosslinking, porém, os experimentos de imunolocalização da proteína in situ mostraram uma grande concentração de CrSept na base flagelar durante as fases G0, e G1, com mudança no perfil de localização para o citoplasma durante as fases S e M do ciclo celular, evidenciando uma participação da septina na estrutura flagelar e não excluindo a possibilidade de uma interação in vivo entre CrSept e CrSAHH. Análises do nível de expressão gênica de CrSept mostraram uma tendência de maior expressão do gene da septina durante o período claro, com redução na fase escura do ciclo celular, resultados que se assemelham aos observados pela análise qualitativa, por western blot, da expressão da proteína ao longo do ciclo celular. Os experimentos de silenciamento gênico, por fim, mostraram um possível fenótipo relacionado à redução de mRNA de CrSept, não observado no grupo controle. Estes resultados mostram que a CrSept possui caráter estrutural na alga verde C. reinhardtii, podendo atuar como suporte para outras proteínas durante a fase de crescimento celular. Além disso, localizações pontuais por toda a célula durante a fase de divisão celular sugerem que a CrSept desempenha um importante papel na manutenção da estrutura celular para a conclusão da divisão celular. / Septins belong to a family of proteins that bind guanine nucleotide and have been found in many eukaryotes, but never in plants. These proteins have been described in cytokinesis process, cell structure and exocytosis, but little is known about their way of action. Besides, septins are capable of polymerize in high organized heterofilaments when interacting with other septins, but references and functional studies of septins homofilaments remain controversial. This work aimed to characterize the function of the unique septin from the green alga Chlamydomonas reinhardtii, a model eukaryote organism that long diverged from a common ancestor to plants and Metazoans and that has a single septin. For that, yeast two-hybrid assays were conducted in search of possible partner proteins to C.reinhardtii, septin (CrSept); also, gene expression analyses by qPCR of different points of the cell cycle helped characterize the expression profile of the CrSept gene and gene silencing by artificial micro-RNA (amiRNA) and immunolocalization by confocal microscopy were used to enrich functional and localization studies. The yeast two-hybrid assays returned two possible partner proteins to CrSept - S-Adenosyl-Homocysteine-Hydrolase (CrSAHH) e Subtilase-like-Serino-Protease (sporangin) – both related to the flagella structure. The interaction among CrSept and CrSAHH could not be validated in vitro by pulldown or crosslink assays, however, the in situ immunostaining showed CrSept can mostly be found in punctual concentrated spots close to the base of the flagella during G0 and G1 phases of the cell cycle, which differs from the profile observed during phases S and M, where the protein can be observed as punctual spots through the whole cell. These results strengths CrSept role on the flagellar structure and do not exclude the possibility of an in vivo interaction between CrSept and CrSAHH. Gene expression analyses showed that septin is mostly expressed during the light part of the cycle, which is also observed at the protein quantitative analysis by western blot. Gene silencing experiments showed a possible phenotype in clones expressing amiRNA against CrSept, which was not observed on control group. Together, these results suggest CrSept has a structural role in C. reinhardtii and might work as a scaffold to other proteins during cell growth stage. Besides, punctual staining observed during mitosis suggests CrSept might help maintaining cell structure until cell division is completed.
3

Interações de septinas de Schistosoma mansoni com modelos de membranas / Interactions of Schistosoma mansoni septins with membrane models

Fontes, Marina Gabriel 28 May 2019 (has links)
Septinas são GTPases capazes de se polimerizar. Essas proteínas, componentes do citoesqueleto, participam de diversos processos celulares nos quais elas se encontram associadas às membranas, como na citocinese, na ciliogênese e na exocitose. Para que possam exercer essas variadas funções, as septinas organizam-se como hetero-oligômeros (complexos) não-polares, os quais podem interagir entre si, formando estruturas maiores como filamentos, anéis e redes. Essas proteínas são altamente conservadas em eucariotos, todavia, o número de genes de septinas entre espécies é variável de uma, em Chlamydomonas reinhardtii, até mais de uma dezena de genes de septinas em humanos. Estudos anteriores do nosso grupo de pesquisa descreveram quatro septinas em Schistosoma mansoni, nomeadas SmSEPT5, SmSEPT10, SmSEPT7.1 e SmSEPT7.2. Ainda, recentemente, foi verificado que essas septinas são capazes de se ligar a membranas modelo, constituindo um modelo mais simples, quando comparadas às humanas, para estudar os mecanismos de associação às membranas. Neste trabalho, foram investigadas a influência da curvatura das membranas para a interação septinas-lipídios e a especificidade de septinas por diferentes fosfolipídios. Além das septinas de S. mansoni, o complexo de septinas de Ciona intestinalis foi também incluído, visando análises comparativas. Experimentos de microscopia confocal de fluorescência mostraram que tanto a SmSEPT10 isolada, quanto os complexos de septinas de S. mansoni e de C. intestinalis ligam-se, preferencialmente, a membranas com curvaturas de 2 μm-1(diâmetro de 0,96 μm). Essa tendência parece ser intrínseca de septinas, visto que complexos de outros organismos já haviam apresentado a mesma preferência. A capacidade de uma septina individual, no caso SmSEPT10, de distinguir curvaturas é um indicativo de que a polimerização não é necessária para esse mecanismo. A interação das septinas aos modelos de membrana só foi detectada na presença de dextrose, sugerindo que esse açúcar atue na estabilização dessas proteínas e abrindo novas frentes de estudo sobre a estabilidade das septinas. Os experimentos de microscopia, em conjunto com ensaios de PIP Strips, demonstraram que o complexo de septinas de C. intestinalis liga-se, preferencialmente, à fosfatidilserina, enquanto as septinas de S. mansoni apresentam uma preferência por fosfoinositóis. Finalmente, ensaios preliminares com construções mutantes do C-terminal da SmSEPT10 possibilitaram o desenvolvimento de uma hipótese para o mecanismo de associação dessa septina às membranas. / Septins are polymerizable GTPases. These cytoskeletal proteins are involved in several cellular processes in which they are associated to membranes, including cytokinesis, ciliogenesis and exocytosis. In order to perform these various functions, septins assemble into non-polar hetero-oligomers (complexes), which interact with each other forming higher-order structures such as filaments, ring and gauzes. These proteins are highly conserved in eukaryotes, yet the number of septin genes varies from one, in Chlamydomonas reinhardtii, to more than a dozen septin genes in humans. Previous studies from our research group described four septins in Schistosoma mansoni, named SmSEPT5, SmSEPT10, SmSEPT7.1 and SmSEPT7.2. Recently, it was verified that these proteins are capable of binding to model membranes, constituting a simpler model, when compared to human septins, to study the mechanism of membrane association. In this work, the influence of membrane curvature to the septin-lipid binding and the septin specificity to different phospholipids were investigated. In addition to S. mansoni septins, the septin complex from Ciona intestinalis was also included for comparative analyzes. Confocal fluorescence microscopy experiments showed that both SmSEPT10 and the septin complexes from S. mansoni and C. intestinalis bind, preferably, to membranes with 2 μm-1 curvatures (0,96 μm diameter). This tendency seems to be intrinsic to septins, as hetero-oligomers from other organisms had already presented the same binding preference. The capacity of an individual septin to distinguish curvatures is an indicative that the polymerization is not required for this mechanism. The interaction of these septins to the membrane models was only detected in the presence of dextrose, suggesting that this sugar acted in the protein stabilization, thus opening up new to study septin stability. These microscopy experiments, together with PIP Strips assays, demonstrated that the septin complex from C. intestinalis binds preferentially to phosphatidylserine, whereas septins from S. mansoni show a preference to phosphoinositides. Finally, preliminary assays with mutant constructions of SmSEPT10 C-terminal enabled the development of a hypothesis for the association mechanism of these proteins to membranes.
4

Estudos estruturais e bioquímicos das septinas 7 e 9 humanas / Structural and biochemical studies of human septins 7 e 9

Alessandro, Fernando 07 June 2010 (has links)
As proteínas pertencentes à família das septinas foram originalmente descobertas em 1971 em decorrencia de estudos genéticos em células mutantes. Essas proteínas encontradas em fungos e animais, mas não em plantas apresentam como principais características a presença de um domínio conservado de ligação aos nucleotídeos de guanina (GTP) e a formação de filamentos homo- e hetero-oligoméricos, que são estruturas altamente organizadas. Estudos filogenéticos e moleculares em humanos identificaram 14 septinas que são divididas em 4 grupos (I, II, III e IV). Estas moléculas associam-se com membranas celulares, actina, microtúbulos do citoesqueleto e estão envolvidas em inúmeros processos que ocorrem no córtex celular e requerem organização espacial, tais como: citocinese, ciclo celular, formação de barreiras de difusão, alinhamento de fuso. Alterações na expressão das septinas estão associadas a vários tipos de tumores e a doenças de Parkinson e Alzheimer. Neste trabalho, com o objetivo de obter informações estruturais e bioquímicas das septinas 7 e 9 humanas. Este projeto é parte de um esforço conjunto coordenado pelo Prof. Dr. Richard C. Garratt e conhecido informalmente como Septimoma. As construções recombinantes SEPT 7, SEPT 7G, e SEPT 9G foram expressas em Escherichia coli e as proteínas recombinantes obtidas. As análises em eletroforese SDS-Page e em gel nativo indicam que essas proteínas foram purificadas com sucesso. A atividade GTPase e o estado oligomérico na forma dimérica foram verificados. Estudos de dicroísmo circular e fluorescência determinaram que esses recombinantes são formados por uma mistura de estruturas secundárias &alfa; e β, e também que o C e o N terminais aumentam a estabilidade das proteínas. Foram obtidos cristais da SEPT 7G e, por meio da técnica de raios-X, foi determinado um modelo tridimensional da proteína com resolução de 3,4o. / Proteins belonging to the septin family were originally discovered in 1971 through genetic studies of mutant cells. These proteins found in fungi and animals, but not in plants present, as their main characteristics, a conserved guanine nucleotide-binding domain (GTP) and they also form homo and hetero-oligomeric filaments that are highly organized structures. Phylogenetic and molecular studies in humans have identified 14 septins which are divided into 4 subfamilies (groups I, II, III and IV). These molecules associate with cell membranes, actin, cytoskeleton microtubules and they are related to a number of processes that take place in the cell cortex and that require spatial organization, such as cytokinesis, cell cycle, diffusion barrier formation and spindle alignment. Alterations in the expression of septins are associated with several types of tumors and with Parkinsons and Alzheimers diseases. In this work, with the goal of obtaining structural and biochemical information of human septins 7 and 9, the recombinants SEPT 7, SEPT 7G and SEPT 9G were expressed in E. coli. Analyses both in SDS-Page electroforesis and in native gel suggest that these proteins were purified successfully for they are soluble and homogeneous. GTpase activity has been verified in all of these recombinants, which shows that these proteins are present in native form and that additional molecules are not needed for this activity. It was possible to determine through different techniques such as molecular exclusion chromatography and SAXS that all the molecules in solution are grouped as dimeric form. Circular dichroism and fluorescence spectroscopic studies have determined both that such recombinants are formed by means of a mixture of &alfa; and β secondary structures and that the C and N-terminals increase the stability of proteins. Protein stability studies under different pH and temperature conditions show that the raise of the latter produces a greater molecular aggregation. Measurements of fluorescence emissions have indicated that the SEPT 7, SEPT 7G and SEPT 9G form structures of amyloid-like filaments found in many septins. Crystal structures of SEPT 7G have been obtained and, by means of the X-ray technique, a 3-D model of the protein has been determined with a resolution of 3.4o. It has been possible to predict, with molecular modeling studies, regions formed by loops that showed low electronic density in the GTPase crystallographic model. Therefore, it has been possible to add more structural information to this domain and to form the complete polypeptide without cuts.
5

Especificidade na montagem de filamentos de Septinas: o caso da interface G entre SEPT5 e SEPT8 / Specificity in the assembly of Septins filaments: the case of the G interface between SEPT5 and SEPT8

Diego Antonio Leonardo Cabrejos 27 June 2016 (has links)
Septinas abrangem uma família conservada de proteínas que ligam e hidrolisam GTP e formam heterofilamentos, anéis e redes para realizar as suas funções. Apresentam três domínios estruturais: o domínio N-terminal contendo uma sequência polibásica (para ligar membranas), o domínio de ligação ao nucleotídeo (G) e o domínio C-terminal que inclui uma sequência predita de formar um coiled-coil. Em humanos, as 13 septinas são classificadas em quatro grupos (I, II, III e IV) baseadas nas sequências de aminoácidos. O único filamento caracterizado estruturalmente, até hoje, é o formado por SEPT2-SEPT6-SEPT7, mostrando que as subunidades interagem através de duas interfaces (chamadas G e NC). Os determinantes estruturais da montagem correta do filamento são pouco conhecidos, sendo o estudo limitado pela complexidade em purificar e cristalizar complexos triméricos ou tetraméricos. Uma abordagem alternativa é estudar interfaces individuais de um filamento (G e/ou NC) por separado. Assim, o presente projeto objetivou estudar, utilizando uma abordagem biofísica e estrutural, a interface G formada por SEPT5 e SEPT8 para elucidar os fatores importantes em determinar a sua especificidade. Os domínios GTPase de SEPT5 e SEPT8 foram clonadas em vetor de expressão bicistrônico pET-Duet, co-expressas e co-purificadas. Estudos de análise do estado oligomérico e homogeneidade foram conduzidos utilizando cromatografia de exclusão molecular, espalhamento dinâmico de luz e ultracentrifugação analítica, revelando um complexo dimérico e monodisperso. O complexo apresenta uma mistura aproximadamente equimolar de nucleotídeos (GTP e GDP) ligados enquanto SEPT8(G) sozinha é incapaz de ligar qualquer um dos dois. Além disto o complexo apresenta uma termoestabilidade maior que SEPT8(G), verificado por um aumento em Tm de 5°C. Com o intuito de observar os determinantes estruturais da especificidade, ensaios de cristalização foram conduzidos e assim, cristais do complexo SEPT5-SEPT8(G) que difrataram apenas a muito baixa resolução foram obtidos. Na ausência de uma estrutura cristalográfica, modelagem por homologia foi realizada para analisar as interfaces G entre diferentes combinações de septinas. Identificamos uma interação entre aminoácidos característicos (aminoácidos únicos para cada grupo de septinas) para o complexo formado entre membros do grupo III, (incluindo SEPT5) e membros do grupo II, (incluindo SEPT8). Esta interação entre Phe131 (grupo III) e Thr19 (grupo II) pode explicar a especificidade na formação de uma interface G entre septinas destes grupos durante a formação do filamento e além disso, a importância da presença do GTP ligado ao septina do grupo II. Com isto, propomos pela primeira vez uma explicação plausível da relevância da perda de atividade catalítica das septinas deste grupo, um fato inexplicado até o momento. Mutação dos resíduos identificados levou a uma mudança no seu perfil de eluição do complexo durante purificação por exclusão molecular indicando alterações na formação do complexo mutante. / Septins are a conserved family of proteins that bind and hydrolyze GTP and form heterofilaments, rings and networks in order to carry out their functions. They have three structural domains: an N-terminal domain containing a polybasic sequence (for membrane binding), a nucleotide-binding (G) domain and a C-terminal domain including a sequence predicted to form a coiled-coil. In humans, 13 septins have been classified into four groups (I, II, III and IV) based on their amino acid sequences. The only structurally characterized filament described to date is formed by SEPT2-SEPT6-SEPT7, which reveals that the subunits interact through two different interfaces (G and NC). The structural determinants of correct filament assembly are poorly known, and this is limited by the complexity of purifying and crystallizing trimeric or tetrameric complexes. An alternative approach is to study a single filament interface (G or NC) on its own. Here, we aimed to study, using biophysical and structural approaches, the G interface formed between SEPT5 and SEPT8 to elucidate the factors relevant to determining its specificity. The GTPase domain of SEPT5 and SEPT8, were cloned into the bicistronic expression vector pET-Duet, co-expressed and co-purified. Studies to determine the oligomeric state and homogeneity of the complex were conducted using size exclusion chromatography, dynamic light scattering and analytical ultracentrifugation, revealing a monodisperse dimer for SEPT5-SEPT8(G). The complex elutes with an approximately equimolar mixture of bound nucleotides (GTP and GDP) whereas SEPT8(G) alone is shown to be unable to bind either. Furthermore, the complex has a greater thermostability than SEPT8(G), demonstrated by an increase of 5°C in Tm. In order to determine the structural determinants of specificity, crystallization trials were conducted and crystals of the SEPT5-SEPT8(G) complex were obtained, but these diffracted to only very low resolution. In the absence of a crystal structure, homology modeling was performed to analyze the potential G interfaces between different septin combinations. An interaction between characteristic amino acids (those which are unique to given septin group) was identified for the complex formed between group III septins (including SEPT5) and group II septins (including SEPT8). This interaction, between Phe131 (group II) and Thr19 (group III) may explain the specificity in the formation of a G interface between septins of these groups during filament formation and furthermore the importance of GTP bound to the group II septin. These observations allow us to propose for the first time a plausible explanation for relevance of the loss of catalytic activity by this septin group, an unexplained fact up until now. Mutation of the identified residues resulted in a change in the elution profile of the complex from the size exclusion column suggesting structural alterations in the mutants.
6

Especificidade na montagem de filamentos de Septinas: o caso da interface G entre SEPT5 e SEPT8 / Specificity in the assembly of Septins filaments: the case of the G interface between SEPT5 and SEPT8

Cabrejos, Diego Antonio Leonardo 27 June 2016 (has links)
Septinas abrangem uma família conservada de proteínas que ligam e hidrolisam GTP e formam heterofilamentos, anéis e redes para realizar as suas funções. Apresentam três domínios estruturais: o domínio N-terminal contendo uma sequência polibásica (para ligar membranas), o domínio de ligação ao nucleotídeo (G) e o domínio C-terminal que inclui uma sequência predita de formar um coiled-coil. Em humanos, as 13 septinas são classificadas em quatro grupos (I, II, III e IV) baseadas nas sequências de aminoácidos. O único filamento caracterizado estruturalmente, até hoje, é o formado por SEPT2-SEPT6-SEPT7, mostrando que as subunidades interagem através de duas interfaces (chamadas G e NC). Os determinantes estruturais da montagem correta do filamento são pouco conhecidos, sendo o estudo limitado pela complexidade em purificar e cristalizar complexos triméricos ou tetraméricos. Uma abordagem alternativa é estudar interfaces individuais de um filamento (G e/ou NC) por separado. Assim, o presente projeto objetivou estudar, utilizando uma abordagem biofísica e estrutural, a interface G formada por SEPT5 e SEPT8 para elucidar os fatores importantes em determinar a sua especificidade. Os domínios GTPase de SEPT5 e SEPT8 foram clonadas em vetor de expressão bicistrônico pET-Duet, co-expressas e co-purificadas. Estudos de análise do estado oligomérico e homogeneidade foram conduzidos utilizando cromatografia de exclusão molecular, espalhamento dinâmico de luz e ultracentrifugação analítica, revelando um complexo dimérico e monodisperso. O complexo apresenta uma mistura aproximadamente equimolar de nucleotídeos (GTP e GDP) ligados enquanto SEPT8(G) sozinha é incapaz de ligar qualquer um dos dois. Além disto o complexo apresenta uma termoestabilidade maior que SEPT8(G), verificado por um aumento em Tm de 5°C. Com o intuito de observar os determinantes estruturais da especificidade, ensaios de cristalização foram conduzidos e assim, cristais do complexo SEPT5-SEPT8(G) que difrataram apenas a muito baixa resolução foram obtidos. Na ausência de uma estrutura cristalográfica, modelagem por homologia foi realizada para analisar as interfaces G entre diferentes combinações de septinas. Identificamos uma interação entre aminoácidos característicos (aminoácidos únicos para cada grupo de septinas) para o complexo formado entre membros do grupo III, (incluindo SEPT5) e membros do grupo II, (incluindo SEPT8). Esta interação entre Phe131 (grupo III) e Thr19 (grupo II) pode explicar a especificidade na formação de uma interface G entre septinas destes grupos durante a formação do filamento e além disso, a importância da presença do GTP ligado ao septina do grupo II. Com isto, propomos pela primeira vez uma explicação plausível da relevância da perda de atividade catalítica das septinas deste grupo, um fato inexplicado até o momento. Mutação dos resíduos identificados levou a uma mudança no seu perfil de eluição do complexo durante purificação por exclusão molecular indicando alterações na formação do complexo mutante. / Septins are a conserved family of proteins that bind and hydrolyze GTP and form heterofilaments, rings and networks in order to carry out their functions. They have three structural domains: an N-terminal domain containing a polybasic sequence (for membrane binding), a nucleotide-binding (G) domain and a C-terminal domain including a sequence predicted to form a coiled-coil. In humans, 13 septins have been classified into four groups (I, II, III and IV) based on their amino acid sequences. The only structurally characterized filament described to date is formed by SEPT2-SEPT6-SEPT7, which reveals that the subunits interact through two different interfaces (G and NC). The structural determinants of correct filament assembly are poorly known, and this is limited by the complexity of purifying and crystallizing trimeric or tetrameric complexes. An alternative approach is to study a single filament interface (G or NC) on its own. Here, we aimed to study, using biophysical and structural approaches, the G interface formed between SEPT5 and SEPT8 to elucidate the factors relevant to determining its specificity. The GTPase domain of SEPT5 and SEPT8, were cloned into the bicistronic expression vector pET-Duet, co-expressed and co-purified. Studies to determine the oligomeric state and homogeneity of the complex were conducted using size exclusion chromatography, dynamic light scattering and analytical ultracentrifugation, revealing a monodisperse dimer for SEPT5-SEPT8(G). The complex elutes with an approximately equimolar mixture of bound nucleotides (GTP and GDP) whereas SEPT8(G) alone is shown to be unable to bind either. Furthermore, the complex has a greater thermostability than SEPT8(G), demonstrated by an increase of 5°C in Tm. In order to determine the structural determinants of specificity, crystallization trials were conducted and crystals of the SEPT5-SEPT8(G) complex were obtained, but these diffracted to only very low resolution. In the absence of a crystal structure, homology modeling was performed to analyze the potential G interfaces between different septin combinations. An interaction between characteristic amino acids (those which are unique to given septin group) was identified for the complex formed between group III septins (including SEPT5) and group II septins (including SEPT8). This interaction, between Phe131 (group II) and Thr19 (group III) may explain the specificity in the formation of a G interface between septins of these groups during filament formation and furthermore the importance of GTP bound to the group II septin. These observations allow us to propose for the first time a plausible explanation for relevance of the loss of catalytic activity by this septin group, an unexplained fact up until now. Mutation of the identified residues resulted in a change in the elution profile of the complex from the size exclusion column suggesting structural alterations in the mutants.
7

Estudos estruturais e bioquímicos das septinas 7 e 9 humanas / Structural and biochemical studies of human septins 7 e 9

Fernando Alessandro 07 June 2010 (has links)
As proteínas pertencentes à família das septinas foram originalmente descobertas em 1971 em decorrencia de estudos genéticos em células mutantes. Essas proteínas encontradas em fungos e animais, mas não em plantas apresentam como principais características a presença de um domínio conservado de ligação aos nucleotídeos de guanina (GTP) e a formação de filamentos homo- e hetero-oligoméricos, que são estruturas altamente organizadas. Estudos filogenéticos e moleculares em humanos identificaram 14 septinas que são divididas em 4 grupos (I, II, III e IV). Estas moléculas associam-se com membranas celulares, actina, microtúbulos do citoesqueleto e estão envolvidas em inúmeros processos que ocorrem no córtex celular e requerem organização espacial, tais como: citocinese, ciclo celular, formação de barreiras de difusão, alinhamento de fuso. Alterações na expressão das septinas estão associadas a vários tipos de tumores e a doenças de Parkinson e Alzheimer. Neste trabalho, com o objetivo de obter informações estruturais e bioquímicas das septinas 7 e 9 humanas. Este projeto é parte de um esforço conjunto coordenado pelo Prof. Dr. Richard C. Garratt e conhecido informalmente como Septimoma. As construções recombinantes SEPT 7, SEPT 7G, e SEPT 9G foram expressas em Escherichia coli e as proteínas recombinantes obtidas. As análises em eletroforese SDS-Page e em gel nativo indicam que essas proteínas foram purificadas com sucesso. A atividade GTPase e o estado oligomérico na forma dimérica foram verificados. Estudos de dicroísmo circular e fluorescência determinaram que esses recombinantes são formados por uma mistura de estruturas secundárias &alfa; e β, e também que o C e o N terminais aumentam a estabilidade das proteínas. Foram obtidos cristais da SEPT 7G e, por meio da técnica de raios-X, foi determinado um modelo tridimensional da proteína com resolução de 3,4o. / Proteins belonging to the septin family were originally discovered in 1971 through genetic studies of mutant cells. These proteins found in fungi and animals, but not in plants present, as their main characteristics, a conserved guanine nucleotide-binding domain (GTP) and they also form homo and hetero-oligomeric filaments that are highly organized structures. Phylogenetic and molecular studies in humans have identified 14 septins which are divided into 4 subfamilies (groups I, II, III and IV). These molecules associate with cell membranes, actin, cytoskeleton microtubules and they are related to a number of processes that take place in the cell cortex and that require spatial organization, such as cytokinesis, cell cycle, diffusion barrier formation and spindle alignment. Alterations in the expression of septins are associated with several types of tumors and with Parkinsons and Alzheimers diseases. In this work, with the goal of obtaining structural and biochemical information of human septins 7 and 9, the recombinants SEPT 7, SEPT 7G and SEPT 9G were expressed in E. coli. Analyses both in SDS-Page electroforesis and in native gel suggest that these proteins were purified successfully for they are soluble and homogeneous. GTpase activity has been verified in all of these recombinants, which shows that these proteins are present in native form and that additional molecules are not needed for this activity. It was possible to determine through different techniques such as molecular exclusion chromatography and SAXS that all the molecules in solution are grouped as dimeric form. Circular dichroism and fluorescence spectroscopic studies have determined both that such recombinants are formed by means of a mixture of &alfa; and β secondary structures and that the C and N-terminals increase the stability of proteins. Protein stability studies under different pH and temperature conditions show that the raise of the latter produces a greater molecular aggregation. Measurements of fluorescence emissions have indicated that the SEPT 7, SEPT 7G and SEPT 9G form structures of amyloid-like filaments found in many septins. Crystal structures of SEPT 7G have been obtained and, by means of the X-ray technique, a 3-D model of the protein has been determined with a resolution of 3.4o. It has been possible to predict, with molecular modeling studies, regions formed by loops that showed low electronic density in the GTPase crystallographic model. Therefore, it has been possible to add more structural information to this domain and to form the complete polypeptide without cuts.
8

Estudos estruturais da septina humana SEPT11 / STRUCTURAL STUDIES OF THE HUMAN SEPTIN SEPT11

Hoff, Caroline 29 August 2008 (has links)
Septinas são proteínas de ligação ao nucleotídeo de guanina (GTP). Foram inicialmente identificadas em fungos e atuam na fase final da divisão celular. Posteriormente, também verificaram que esta família de proteínas está presente em outros eucariotos com exceção de plantas. Septinas são purificadas de fungos Saccharomyces cerevisiae, Drosophila e cérebro de mamíferos na forma de heterofilamentos e são constituídas de três regiões principais: um N-terminal variável, um domínio central GTPase altamente conservado e um domínio coiled-coil C-terminal. Sabe-se que existem pelo menos catorze genes que codificam septinas em humanos, no entanto, há poucas informações estruturais sobre elas. Destas catorze septinas, somente três (septinas 2, 6 e 7) tiveram parte de suas estruturas cristalográficas determinada, principalmente os domínios GTPase. A família das septinas pode ser dividida em quatro subgrupos baseado em similaridade seqüencial. Um deles (grupo II) é formado por SEPT6, SEPT8, SEPT10, SEPT11 e a recém-descoberta SEPT14. A proteína SEPT11 foi descrita pela primeira vez em 2004 e detectada em vários tecidos humanos. Faz parte de complexos com outras septinas na formação de heterofilamentos e pode estar envolvida no transporte tubular e filtração glomerular nos rins. Para apresentar os estudos com a proteína SEPT11 nós a dividimos em domínios estruturais: SEPT11NG (domínios N-terminal e GTPase), SEPT11G (domínio GTPase), SEPT11GC (domínios GTPase e C-terminal) e SEPT11NGC (domínios N-terminal, GTPase e C-terminal). Os genes dos domínios estruturais SEPT11G e SEPT11GC foram clonados em vetor de expressão bacteriano, e SEPT11NG em vetor de propagação bacteriano. Tanto SEPT11G quanto SEPT11GC foram produzidos em E. coli e purificados com sucesso. O espectro de dicroísmo celular (CD) e o emprego de técnicas computacionais mostraram que a SEPT11 apresenta um perfil característico de proteínas do tipo &#945/&#946 coerente com a estrutura observada para SEPT6. Os estudos de espalhamento de luz a 350 nm mostraram que a proteína sofre um forte processo de agregação em temperaturas maiores que 30&#176C, parecido com outras septinas (incluindo SEPT4 e SEPT2) e condizentes com estudos de estabilidade térmica acompanhados por CD. Resultados de cromatografia de exclusão molecular indicam que SEPT11G foi produzida na forma de um homodímero (como também visto para SEPT4, SEPT2 e SEPT7) e SEPT11GC na forma de um monômero. Todos estes dados sugerem que as proteínas heterólogas descritas aqui enovelaram corretamente e assumiram sua estrutura nativa. Porém também foi demonstrado que a SEPT11G não apresentava nenhum nucleotídeo ligado (GDP ou GTP) mesmo quando purificada na presença dos mesmos. Resultados de modelagem da SEPT11G baseado no domínio GTPase da SEPT6 não revelaram nenhuma diferença significativa em torno do sítio ativo capaz de explicar a incapacidade da SEPT11 em ligar GTP/GDP. Especulamos que no caso da SEPT11 (e possivelmente outras septinas do grupo II), a presença de outras septinas e a montagem do heterofilamento sejam necessárias para estabilizar a interação entre GTP e a proteína. / Septins are GTP-binding proteins. They were originally identified in fungi and act during the final stages of cell division. Subsequently, they were also identified in other eukaryotic with the exception of plants. Septins are purified from Saccharomyces cerevisiae, Drosophila, and mammalian brain in the form of heterofilaments and consist of three principal regions: a variable N-terminal domain, a central highly conserved GTP-binding domain and a coiled-coil domain at the C-terminus. It is known that there are at least 14 human septin genes but as yet, there is still relatively little structural information concerning their protein products. Of these, only three (septins 2, 6 and 7) have had part of their three-dimensional structure (principally the GTPase domain) determined by X-ray crystallography. The septin family can be divided into four subgroups on the basis of sequence similarity. One of them (group II) is composed of SEPT6, SEPT8, SEPT10, SEPT11 and SEPT14. SEPT11 was described for the first time in 2004 and was observed to be expressed in several human tissues. It is described as forming part of heterofilamentous complexes with other septins and may be involved in the glomerular filtration in the kidney. In order to characterize the SEPT11 protein, it was initially divided into its component structural domains and several constructs elaborated: SEPT11NG (N-terminal and GTPase domain), SEPT11G (GTPase domain), SEPT11GC (GTPase domain and C-terminal) and SEPT11NGC (N-terminal, GTPase and C-terminal domains). The genes corresponding to SEPT11G and SEPT11GC were cloned in an expression vector and SEPT11NG into a bacterial propagation vector. Both SEPT11G and SEPT11GC were successfully produced in E. coli and subsequently purified. Both circular dichroism spectra and computational techniques indicated that SEPT11 exhibited that both proteins were of the &#945/&#946 type, as anticipated, coherent with the structure of SEPT6. Light scattering measurements at 350 nm showed that the protein undergoes a process of aggregation at temperatures above 30&#176C, similar to other septins (SEPT2 and SEPT4) and consistent with thermal stability studies using circular dichroism. Results of size exclusion chromatography indicated that SEPT11G formed dimers (similar to SEPT2, SEPT4 and SEPT7) and SEPT11GC apparently formed monomers only. All of these experimental data suggest that the heterologously expressed proteins described here folded into their native conformation. On the other hand, we also demonstrated that SEPT11G was nucleotide free even when purified in the presence of excess GTP or GDP. Homology modeling of the GTPase domain of SEPT11 failed to reveal any significant differences with respect to SEPT6 which would explain this lack of binding activity. We speculate that in the case of SEPT11 (and possibly other members of the group II septins) the presence of partner septins and the formation of the heterofilaments are essential for stable nucleotide binding.
9

Estudos estruturais da septina humana SEPT11 / STRUCTURAL STUDIES OF THE HUMAN SEPTIN SEPT11

Caroline Hoff 29 August 2008 (has links)
Septinas são proteínas de ligação ao nucleotídeo de guanina (GTP). Foram inicialmente identificadas em fungos e atuam na fase final da divisão celular. Posteriormente, também verificaram que esta família de proteínas está presente em outros eucariotos com exceção de plantas. Septinas são purificadas de fungos Saccharomyces cerevisiae, Drosophila e cérebro de mamíferos na forma de heterofilamentos e são constituídas de três regiões principais: um N-terminal variável, um domínio central GTPase altamente conservado e um domínio coiled-coil C-terminal. Sabe-se que existem pelo menos catorze genes que codificam septinas em humanos, no entanto, há poucas informações estruturais sobre elas. Destas catorze septinas, somente três (septinas 2, 6 e 7) tiveram parte de suas estruturas cristalográficas determinada, principalmente os domínios GTPase. A família das septinas pode ser dividida em quatro subgrupos baseado em similaridade seqüencial. Um deles (grupo II) é formado por SEPT6, SEPT8, SEPT10, SEPT11 e a recém-descoberta SEPT14. A proteína SEPT11 foi descrita pela primeira vez em 2004 e detectada em vários tecidos humanos. Faz parte de complexos com outras septinas na formação de heterofilamentos e pode estar envolvida no transporte tubular e filtração glomerular nos rins. Para apresentar os estudos com a proteína SEPT11 nós a dividimos em domínios estruturais: SEPT11NG (domínios N-terminal e GTPase), SEPT11G (domínio GTPase), SEPT11GC (domínios GTPase e C-terminal) e SEPT11NGC (domínios N-terminal, GTPase e C-terminal). Os genes dos domínios estruturais SEPT11G e SEPT11GC foram clonados em vetor de expressão bacteriano, e SEPT11NG em vetor de propagação bacteriano. Tanto SEPT11G quanto SEPT11GC foram produzidos em E. coli e purificados com sucesso. O espectro de dicroísmo celular (CD) e o emprego de técnicas computacionais mostraram que a SEPT11 apresenta um perfil característico de proteínas do tipo &#945/&#946 coerente com a estrutura observada para SEPT6. Os estudos de espalhamento de luz a 350 nm mostraram que a proteína sofre um forte processo de agregação em temperaturas maiores que 30&#176C, parecido com outras septinas (incluindo SEPT4 e SEPT2) e condizentes com estudos de estabilidade térmica acompanhados por CD. Resultados de cromatografia de exclusão molecular indicam que SEPT11G foi produzida na forma de um homodímero (como também visto para SEPT4, SEPT2 e SEPT7) e SEPT11GC na forma de um monômero. Todos estes dados sugerem que as proteínas heterólogas descritas aqui enovelaram corretamente e assumiram sua estrutura nativa. Porém também foi demonstrado que a SEPT11G não apresentava nenhum nucleotídeo ligado (GDP ou GTP) mesmo quando purificada na presença dos mesmos. Resultados de modelagem da SEPT11G baseado no domínio GTPase da SEPT6 não revelaram nenhuma diferença significativa em torno do sítio ativo capaz de explicar a incapacidade da SEPT11 em ligar GTP/GDP. Especulamos que no caso da SEPT11 (e possivelmente outras septinas do grupo II), a presença de outras septinas e a montagem do heterofilamento sejam necessárias para estabilizar a interação entre GTP e a proteína. / Septins are GTP-binding proteins. They were originally identified in fungi and act during the final stages of cell division. Subsequently, they were also identified in other eukaryotic with the exception of plants. Septins are purified from Saccharomyces cerevisiae, Drosophila, and mammalian brain in the form of heterofilaments and consist of three principal regions: a variable N-terminal domain, a central highly conserved GTP-binding domain and a coiled-coil domain at the C-terminus. It is known that there are at least 14 human septin genes but as yet, there is still relatively little structural information concerning their protein products. Of these, only three (septins 2, 6 and 7) have had part of their three-dimensional structure (principally the GTPase domain) determined by X-ray crystallography. The septin family can be divided into four subgroups on the basis of sequence similarity. One of them (group II) is composed of SEPT6, SEPT8, SEPT10, SEPT11 and SEPT14. SEPT11 was described for the first time in 2004 and was observed to be expressed in several human tissues. It is described as forming part of heterofilamentous complexes with other septins and may be involved in the glomerular filtration in the kidney. In order to characterize the SEPT11 protein, it was initially divided into its component structural domains and several constructs elaborated: SEPT11NG (N-terminal and GTPase domain), SEPT11G (GTPase domain), SEPT11GC (GTPase domain and C-terminal) and SEPT11NGC (N-terminal, GTPase and C-terminal domains). The genes corresponding to SEPT11G and SEPT11GC were cloned in an expression vector and SEPT11NG into a bacterial propagation vector. Both SEPT11G and SEPT11GC were successfully produced in E. coli and subsequently purified. Both circular dichroism spectra and computational techniques indicated that SEPT11 exhibited that both proteins were of the &#945/&#946 type, as anticipated, coherent with the structure of SEPT6. Light scattering measurements at 350 nm showed that the protein undergoes a process of aggregation at temperatures above 30&#176C, similar to other septins (SEPT2 and SEPT4) and consistent with thermal stability studies using circular dichroism. Results of size exclusion chromatography indicated that SEPT11G formed dimers (similar to SEPT2, SEPT4 and SEPT7) and SEPT11GC apparently formed monomers only. All of these experimental data suggest that the heterologously expressed proteins described here folded into their native conformation. On the other hand, we also demonstrated that SEPT11G was nucleotide free even when purified in the presence of excess GTP or GDP. Homology modeling of the GTPase domain of SEPT11 failed to reveal any significant differences with respect to SEPT6 which would explain this lack of binding activity. We speculate that in the case of SEPT11 (and possibly other members of the group II septins) the presence of partner septins and the formation of the heterofilaments are essential for stable nucleotide binding.
10

Monomeric states of the beta-amyloid peptide investigated under high pressure by nuclear magnetic resonance spectroscopy / Estados monoméricos do peptídeo beta-amiloide investigados sob alta pressão por espectroscopia de ressonância magnética nuclear

Cavini, Ítalo Augusto 17 December 2018 (has links)
The main histological feature of Alzheimer\'s disease is the presence of amyloid plaques in the patient\'s brain. The most abundant element of these plaques is the β-amyloid peptide (Aβ). Initially soluble, the peptide exhibits in solution an intricate equilibrium among monomeric, oligomeric (some of which are regarded as the toxic species) and fibrillar states, which prevents its crystallization and subsequent structural determination by X-ray diffraction. High-pressure nuclear magnetic resonance (NMR) spectroscopy has been used by our group to detect rare, high-energy monomeric Aβ (1-40) states, coexisting in equilibrium with oligomers and fibrils. This work aims to characterize the thermodynamics and the structure of the rare excited states of the Aβ peptide through the use of high pressure NMR. A large collection of NMR spectra of the Aβ (1-40) peptide as a function of pressure was recorded and analyzed. Secondary structure predictions revealed that the Aβ peptide adopts extended β-strand-like structures, similar to those found in amyloid-fibril structures. From the pressure curves of chemical shifts and cross-peak volumes, at least three monomeric states could be detected, which were thermodynamically characterized by the calculation of the variation of their Gibbs free energy (ΔGij) and molar partial volumes (ΔVij). The study of nuclear Overhauser effects (NOEs) and 3JHα-HN NMR couplings reinforces the existence of extended structures with β-strand propensity, both at ambient (0.1 MPa) and high (275 MPa) pressures. The interaction between the Aβ peptide and the D-peptides RD2 and RD2D3, D-enantiomeric fibril inhibitors, was also characterized. Our results indicate that the D-peptides recognize and bind to a more compact conformation of Aβ. The formation of the Aβ-D-peptide heterodimers ultimately prevents the formation of toxic oligomers, therefore representing a potential therapy against Alzheimer´s disease. Additionally, in the second chapter, we present results on the coiled-coils (CC) from group-III human septins (SEPT1, SEPT2, SEPT4 and SEPT5) also studied by NMR spectroscopy. Septins are GTP-binding proteins present in most eukaryotic organisms and capable of forming filaments, which are essential in cell division. In this study, we used 1H-1H-NOESY spectra to detect the orientation and helix pairings adopted by the C-terminal coiled-coils in solution. The NOE analysis, aided by back-calculated spectra, showed that the only sequence to show an antiparallel structure was SEPT2CC; all the others are parallel. However, the disappearance of specific peaks in the NMR spectrum of SEPT5CC caused by the attachment of a paramagnetic spin label indicates an antiparallel orientation, contrary to our other NMR result. A simple evaluation of the coiled-coil heptameric positions, based on the occurrence of each amino acid residue occupying each position, revealed that both orientations are equally stable. Despite being far less stable compared to other coiled-coils, both could exist physiologically. Other results from the group also suggest that these peptides could have the ability to form both parallel and antiparallel coiled-coils. We speculate that the antiparallel conformation might be related to cross-linking between filaments. / A principal característica histológica da doença de Alzheimer é a presença de placas amiloides no cérebro de pacientes. O constituinte mais abundante dessas placas é o peptídeo β-amiloide (Aβ). Inicialmente solúvel, o peptídeo exibe em solução um intrincado equilíbrio entre estados monoméricos, oligoméricos (alguns deles tidos como as espécies tóxicas) e fibrilares, o que impossibilita sua cristalização e posterior determinação estrutural por difração de raios-X. A espectroscopia de ressonância magnética nuclear (RMN) de alta pressão foi utilizada por nosso grupo para detectar estados monoméricos raros e de alta energia do Aβ(1-40), coexistindo em equilíbrio com oligômeros e fibras. Esse trabalho visa caracterizar a termodinâmica e a estrutura dos estados excitados raros do peptídeo Aβ através do uso da RMN de alta pressão. Uma grande coleção de espectros de RMN do peptídeo Aβ(1-40) em função da pressão foi coletada e analisada. Predições de estrutura secundária revelaram que o peptídeo Aβ adota estruturas estendidas do tipo fitas-β, similares àquelas encontradas em estruturas de fibras amiloides. A partir das curvas de deslocamento químico e volume de pico pela pressão, ao menos três estados monoméricos puderam ser detectados, os quais foram termodinamicamente caracterizados através do cálculo da variação das suas energias livres de Gibbs (ΔGij) e volumes parciais molares (ΔVij). O estudo de efeitos Overhauser nucleares (NOEs) e de acoplamentos 3JHα-HN de RMN reforçam a existência de estruturas estendidas com propensão a fitas-β, tanto a pressão ambiente (0,1 MPa) quanto em alta pressão (275 MPa). A interação entre o peptídeo Aβ e os D-peptídeos RD2 e RD2D3, inibidores D-enatioméricos de fibras, também foi caracterizada. Nossos resultados indicam que os D-peptídeos reconhecem e se ligam a uma conformação mais compacta de Aβ. A formação dos heterodímeros Aβ-D-peptídeo previne, por fim, a formação dos oligômeros tóxicos, representando uma potencial terapia contra a doença de Alzheimer. Adicionalmente, no segundo capítulo, apresentamos resultados sobre os coiled-coils (CC) das septinas humanas do grupo III (SEPT1, SEPT2, SEPT4 e SEPT5) também estudados por espectroscopia de RMN. Septinas são proteínas ligantes de GTP presentes na maioria dos organismos eucarióticos e capazes de formar filamentos, os quais são essenciais à divisão celular. Nesse estudo, utilizamos espectros 1H-1H-NOESY a fim de detectar a orientação e o pareamento de hélices adotados pelos coiled-coils em solução. A análise dos NOEs, auxiliada por espectros retrocalculados, mostrou que a única sequência a mostrar uma estrutura antiparalela foi SEPT2CC; todas as outras são paralelas. Entretanto, o desaparecimento de picos específicos no espectro de RMN de SEPT5CC causado pela presença de um marcador paramagnético de spin indica uma orientação antiparalela, contrário ao nosso outro resultado de RMN. Uma avaliação simples das posições heptaméricas dos coiled-coils, baseada na ocorrência de cada resíduo de aminoácido em ocupar cada posição, revelou que ambas as orientações são igualmente estáveis. Apesar de serem bem menos estáveis comparadas a outros coiled-coils, ambas poderiam existir fisiologicamente. Outros resultados do grupo também sugerem que esses peptídeos poderiam formar tanto coiled-coils paralelos quanto antiparalelos. Nós especulamos que a conformação antiparalela pode estar relacionada a ligações cruzadas entre filamentos.

Page generated in 0.4436 seconds