Spelling suggestions: "subject:"dequence classification"" "subject:"1sequence classification""
11 |
Réseaux de neurones récurrents pour la classification de séquences dans des flux audiovisuels parallèles / Recurrent neural networks for sequence classification in parallel TV streamsBouaziz, Mohamed 06 December 2017 (has links)
Les flux de contenus audiovisuels peuvent être représentés sous forme de séquences d’événements (par exemple, des suites d’émissions, de scènes, etc.). Ces données séquentielles se caractérisent par des relations chronologiques pouvant exister entre les événements successifs. Dans le contexte d’une chaîne TV, la programmation des émissions suit une cohérence définie par cette même chaîne, mais peut également être influencée par les programmations des chaînes concurrentes. Dans de telles conditions,les séquences d’événements des flux parallèles pourraient ainsi fournir des connaissances supplémentaires sur les événements d’un flux considéré.La modélisation de séquences est un sujet classique qui a été largement étudié, notamment dans le domaine de l’apprentissage automatique. Les réseaux de neurones récurrents de type Long Short-Term Memory (LSTM) ont notamment fait leur preuve dans de nombreuses applications incluant le traitement de ce type de données. Néanmoins,ces approches sont conçues pour traiter uniquement une seule séquence d’entrée à la fois. Notre contribution dans le cadre de cette thèse consiste à élaborer des approches capables d’intégrer conjointement des données séquentielles provenant de plusieurs flux parallèles.Le contexte applicatif de ce travail de thèse, réalisé en collaboration avec le Laboratoire Informatique d’Avignon et l’entreprise EDD, consiste en une tâche de prédiction du genre d’une émission télévisée. Cette prédiction peut s’appuyer sur les historiques de genres des émissions précédentes de la même chaîne mais également sur les historiques appartenant à des chaînes parallèles. Nous proposons une taxonomie de genres adaptée à de tels traitements automatiques ainsi qu’un corpus de données contenant les historiques parallèles pour 4 chaînes françaises.Deux méthodes originales sont proposées dans ce manuscrit, permettant d’intégrer les séquences des flux parallèles. La première, à savoir, l’architecture des LSTM parallèles(PLSTM) consiste en une extension du modèle LSTM. Les PLSTM traitent simultanément chaque séquence dans une couche récurrente indépendante et somment les sorties de chacune de ces couches pour produire la sortie finale. Pour ce qui est de la seconde proposition, dénommée MSE-SVM, elle permet de tirer profit des avantages des méthodes LSTM et SVM. D’abord, des vecteurs de caractéristiques latentes sont générés indépendamment, pour chaque flux en entrée, en prenant en sortie l’événement à prédire dans le flux principal. Ces nouvelles représentations sont ensuite fusionnées et données en entrée à un algorithme SVM. Les approches PLSTM et MSE-SVM ont prouvé leur efficacité dans l’intégration des séquences parallèles en surpassant respectivement les modèles LSTM et SVM prenant uniquement en compte les séquences du flux principal. Les deux approches proposées parviennent bien à tirer profit des informations contenues dans les longues séquences. En revanche, elles ont des difficultés à traiter des séquences courtes.L’approche MSE-SVM atteint globalement de meilleures performances que celles obtenues par l’approche PLSTM. Cependant, le problème rencontré avec les séquences courtes est plus prononcé pour le cas de l’approche MSE-SVM. Nous proposons enfin d’étendre cette approche en permettant d’intégrer des informations supplémentaires sur les événements des séquences en entrée (par exemple, le jour de la semaine des émissions de l’historique). Cette extension, dénommée AMSE-SVM améliore remarquablement la performance pour les séquences courtes sans les baisser lorsque des séquences longues sont présentées. / In the same way as TV channels, data streams are represented as a sequence of successive events that can exhibit chronological relations (e.g. a series of programs, scenes, etc.). For a targeted channel, broadcast programming follows the rules defined by the channel itself, but can also be affected by the programming of competing ones. In such conditions, event sequences of parallel streams could provide additional knowledge about the events of a particular stream. In the sphere of machine learning, various methods that are suited for processing sequential data have been proposed. Long Short-Term Memory (LSTM) Recurrent Neural Networks have proven its worth in many applications dealing with this type of data. Nevertheless, these approaches are designed to handle only a single input sequence at a time. The main contribution of this thesis is about developing approaches that jointly process sequential data derived from multiple parallel streams. The application task of our work, carried out in collaboration with the computer science laboratory of Avignon (LIA) and the EDD company, seeks to predict the genre of a telecast. This prediction can be based on the histories of previous telecast genres in the same channel but also on those belonging to other parallel channels. We propose a telecast genre taxonomy adapted to such automatic processes as well as a dataset containing the parallel history sequences of 4 French TV channels. Two original methods are proposed in this work in order to take into account parallel stream sequences. The first one, namely the Parallel LSTM (PLSTM) architecture, is an extension of the LSTM model. PLSTM simultaneously processes each sequence in a separate recurrent layer and sums the outputs of each of these layers to produce the final output. The second approach, called MSE-SVM, takes advantage of both LSTM and Support Vector Machines (SVM) methods. Firstly, latent feature vectors are independently generated for each input stream, using the output event of the main one. These new representations are then merged and fed to an SVM algorithm. The PLSTM and MSE-SVM approaches proved their ability to integrate parallel sequences by outperforming, respectively, the LSTM and SVM models that only take into account the sequences of the main stream. The two proposed approaches take profit of the information contained in long sequences. However, they have difficulties to deal with short ones. Though MSE-SVM generally outperforms the PLSTM approach, the problem experienced with short sequences is more pronounced for MSE-SVM. Finally, we propose to extend this approach by feeding additional information related to each event in the input sequences (e.g. the weekday of a telecast). This extension, named AMSE-SVM, has a remarkably better behavior with short sequences without affecting the performance when processing long ones.
|
12 |
Machine Learning for Disease PredictionFrandsen, Abraham Jacob 01 June 2016 (has links)
Millions of people in the United States alone suffer from undiagnosed or late-diagnosed chronic diseases such as Chronic Kidney Disease and Type II Diabetes. Catching these diseases earlier facilitates preventive healthcare interventions, which in turn can lead to tremendous cost savings and improved health outcomes. We develop algorithms for predicting disease occurrence by drawing from ideas and techniques in the field of machine learning. We explore standard classification methods such as logistic regression and random forest, as well as more sophisticated sequence models, including recurrent neural networks. We focus especially on the use of medical code data for disease prediction, and explore different ways for representing such data in our prediction algorithms.
|
13 |
Segmental discriminative analysis for American Sign Language recognition and verificationYin, Pei 06 April 2010 (has links)
This dissertation presents segmental discriminative analysis techniques for American Sign Language (ASL) recognition and verification. ASL recognition is a sequence classification problem. One of the most successful techniques for recognizing ASL is the hidden Markov model (HMM) and its variants. This dissertation addresses two problems in sign recognition by HMMs. The first is discriminative feature selection for temporally-correlated data. Temporal correlation in sequences often causes difficulties in feature selection. To mitigate this problem, this dissertation proposes segmentally-boosted HMMs (SBHMMs), which construct the state-optimized features in a segmental and discriminative manner. The second problem is the decomposition of ASL signs for efficient and accurate recognition. For this problem, this dissertation proposes discriminative state-space clustering (DISC), a data-driven method of automatically extracting sub-sign units by state-tying from the results of feature selection. DISC and SBHMMs can jointly search for discriminative feature sets and representation units of ASL recognition.
ASL verification, which determines whether an input signing sequence matches a pre-defined phrase, shares similarities with ASL recognition, but it has more prior knowledge and a higher expectation of accuracy. Therefore, ASL verification requires additional discriminative analysis not only in utilizing prior knowledge but also in actively selecting a set of phrases that have a high expectation of verification accuracy in the service of improving the experience of users. This dissertation describes ASL verification using CopyCat, an ASL game that helps deaf children acquire language abilities at an early age. It then presents the "probe" technique which automatically searches for an optimal threshold for verification using prior knowledge and BIG, a bi-gram error-ranking predictor which efficiently selects/creates phrases that, based on the previous performance of existing verification systems, should have high verification accuracy.
This work demonstrates the utility of the described technologies in a series of experiments. SBHMMs are validated in ASL phrase recognition as well as various other applications such as lip reading and speech recognition. DISC-SBHMMs consistently produce fewer errors than traditional HMMs and SBHMMs in recognizing ASL phrases using an instrumented glove. Probe achieves verification efficacy comparable to the optimum obtained from manually exhaustive search. Finally, when verifying phrases in CopyCat, BIG predicts which CopyCat phrases, even unseen in training, will have the best verification accuracy with results comparable to much more computationally intensive methods.
|
14 |
The Characterization and Utilization of Middle-range Sequence Patterns within the Human GenomeShepard, Samuel Steven 20 May 2010 (has links)
No description available.
|
15 |
Predictive models for career progressionSoliman, Zakaria 08 1900 (has links)
No description available.
|
16 |
Efficient Hierarchical Clustering Techniques For Pattern ClassificationVijaya, P A 07 1900 (has links) (PDF)
No description available.
|
17 |
Contributions to the joint segmentation and classification of sequences (My two cents on decoding and handwriting recognition)España Boquera, Salvador 05 April 2016 (has links)
[EN] This work is focused on problems (like automatic speech recognition (ASR) and handwritten text recognition (HTR)) that: 1) can be represented (at least approximately) in terms of one-dimensional sequences, and 2) solving these problems entails breaking the observed sequence down into segments which are associated to units taken from a finite repertoire. The required segmentation and classification tasks are so intrinsically interrelated ("Sayre's Paradox") that they have to be performed jointly.
We have been inspired by what some works call the "successful trilogy", which refers to the synergistic improvements obtained when considering:
- a good formalization framework and powerful algorithms;
- a clever design and implementation taking the best profit of hardware;
- an adequate preprocessing and a careful tuning of all heuristics.
We describe and study "two stage generative models" (TSGMs) comprising two stacked probabilistic generative stages without reordering. This model not only includes Hidden Markov Models (HMMs, but also "segmental models" (SMs).
"Two stage decoders" may be deduced by simply running a TSGM in reversed way, introducing non determinism when required: 1) A directed acyclic graph (DAG) is generated and 2) it is used together with a language model (LM). One-pass decoders constitute a particular case.
A formalization of parsing and decoding in terms of semiring values and language equations proposes the use of recurrent transition networks (RTNs) as a normal form for Context Free Grammars (CFGs), using them in a parsing-as-composition paradigm, so that parsing CFGs result in a slight extension of regular ones. Novel transducer composition algorithms have been proposed that can work with RTNs and can deal with null transitions without resorting to filter-composition even in the presence of null transitions and non-idempotent semirings.
A review of LMs is described and some contributions mainly focused on LM interfaces, LM representation and on the evaluation of Neural Network LMs (NNLMs) are provided.
A review of SMs includes the combination of generative and discriminative segmental models and general scheme of frame emission and another one of SMs.
Some fast cache-friendly specialized Viterbi lexicon decoders taking profit of particular HMM topologies are proposed. They are able to manage sets of active states without requiring dictionary look-ups (e.g. hashing).
A dataflow architecture allowing the design of flexible and diverse recognition systems from a little repertoire of components has been proposed, including a novel DAG serialization protocol.
DAG generators can take over-segmentation constraints into account, make use SMs other than HMMs, take profit of the specialized decoders proposed in this work and use a transducer model to control its behavior making it possible, for instance, to use context dependent units.
Relating DAG decoders, they take profit of a general LM interface that can be extended to deal with RTNs.
Some improvements for one pass decoders are proposed by combining the specialized lexicon decoders and the "bunch" extension of the LM interface, including an adequate parallelization.
The experimental part is mainly focused on HTR tasks on different input modalities (offline, bimodal). We have proposed some novel preprocessing techniques for offline HTR which replace classical geometrical heuristics and make use of automatic learning techniques (neural networks). Experiments conducted on the IAM database using this new preprocessing and HMM hybridized with Multilayer Perceptrons (MLPs) have obtained some of the best results reported for this reference database. Among other HTR experiments described in this work, we have used over-segmentation information, tried lexicon free approaches, performed bimodal experiments and experimented with the combination of hybrid HMMs with holistic classifiers. / [ES] Este trabajo se centra en problemas (como reconocimiento automático del habla (ASR) o de escritura manuscrita (HTR))
que cumplen: 1) pueden representarse (quizás aproximadamente) en términos de secuencias unidimensionales, 2) su resolución implica descomponer la secuencia en segmentos que se pueden clasificar en un conjunto finito de unidades. Las tareas de segmentación y de clasificación necesarias están tan intrínsecamente interrelacionadas ("paradoja de Sayre") que deben realizarse conjuntamente.
Nos hemos inspirado en lo que algunos autores denominan "La trilogía exitosa", refereido a la sinergia obtenida cuando se tiene:
- un buen formalismo, que dé lugar a buenos algoritmos;
- un diseño e implementación ingeniosos y eficientes, que saquen provecho de las características del hardware;
- no descuidar el "saber hacer" de la tarea, un buen preproceso y el ajuste adecuado de los diversos parámetros.
Describimos y estudiamos "modelos generativos en dos etapas" sin reordenamientos (TSGMs), que incluyen no sólo los modelos ocultos de Markov (HMM), sino también modelos segmentales (SMs).
Se puede obtener un decodificador de "dos pasos" considerando a la inversa un TSGM introduciendo no determinismo: 1) se genera un grafo acíclico dirigido (DAG) y 2) se utiliza conjuntamente con un modelo de lenguaje (LM). El decodificador de "un paso" es un caso particular.
Se formaliza el proceso de decodificación con ecuaciones de lenguajes y semianillos, se propone el uso de redes de transición recurrente (RTNs) como forma normal de gramáticas de contexto libre (CFGs) y se utiliza el paradigma de análisis por composición de manera que el análisis de CFGs resulta una extensión del análisis de FSA. Se proponen algoritmos de composición de transductores que permite el uso de RTNs y que no necesita recurrir a composición de filtros incluso en presencia de transiciones nulas y semianillos no idempotentes.
Se propone una extensa revisión de LMs y algunas contribuciones relacionadas con su interfaz, con su representación y con la evaluación de LMs basados en redes neuronales (NNLMs).
Se ha realizado una revisión de SMs que incluye SMs basados en combinación de modelos generativos y discriminativos, así como un esquema general de tipos de emisión de tramas y de SMs.
Se proponen versiones especializadas del algoritmo de Viterbi para modelos de léxico y que manipulan estados activos sin recurrir a estructuras de tipo diccionario, sacando provecho de la caché.
Se ha propuesto una arquitectura "dataflow" para obtener reconocedores a partir de un pequeño conjunto de piezas básicas con un protocolo de serialización de DAGs.
Describimos generadores de DAGs que pueden tener en cuenta restricciones sobre la segmentación, utilizar modelos segmentales no limitados a HMMs, hacer uso de los decodificadores especializados propuestos en este trabajo y utilizar un transductor de control que permite el uso de unidades dependientes del contexto.
Los decodificadores de DAGs hacen uso de un interfaz bastante general de LMs que ha sido extendido para permitir el uso de RTNs.
Se proponen también mejoras para reconocedores "un paso" basados en algoritmos especializados para léxicos y en la interfaz de LMs en modo "bunch", así como su paralelización.
La parte experimental está centrada en HTR en diversas modalidades de adquisición (offline, bimodal). Hemos propuesto técnicas novedosas para el preproceso de escritura que evita el uso de heurísticos geométricos. En su lugar, utiliza redes neuronales. Se ha probado con HMMs hibridados con redes neuronales consiguiendo, para la base de datos IAM, algunos de los mejores resultados publicados. También podemos mencionar el uso de información de sobre-segmentación, aproximaciones sin restricción de un léxico, experimentos con datos bimodales o la combinación de HMMs híbridos con reconocedores de tipo holístico. / [CA] Aquest treball es centra en problemes (com el reconeiximent automàtic de la parla (ASR) o de l'escriptura manuscrita (HTR))
on: 1) les dades es poden representar (almenys aproximadament) mitjançant seqüències unidimensionals, 2) cal descompondre la seqüència en segments que poden pertanyer a un nombre finit de tipus. Sovint, ambdues tasques es relacionen de manera tan estreta que resulta impossible separar-les ("paradoxa de Sayre") i s'han de realitzar de manera conjunta.
Ens hem inspirat pel que alguns autors anomenen "trilogia exitosa", referit a la sinèrgia obtinguda quan prenim en compte:
- un bon formalisme, que done lloc a bons algorismes;
- un diseny i una implementació eficients, amb ingeni, que facen bon us de les particularitats del maquinari;
- no perdre de vista el "saber fer", emprar un preprocés adequat i fer bon us dels diversos paràmetres.
Descrivim i estudiem "models generatiu amb dues etapes" sense reordenaments (TSGMs), que inclouen no sols inclouen els models ocults de Markov (HMM), sinò també models segmentals (SM).
Es pot obtindre un decodificador "en dues etapes" considerant a l'inrevés un TSGM introduint no determinisme: 1) es genera un graf acíclic dirigit (DAG) que 2) és emprat conjuntament amb un model de llenguatge (LM). El decodificador "d'un pas" en és un cas particular.
Descrivim i formalitzem del procés de decodificació basada en equacions de llenguatges i en semianells. Proposem emprar xarxes de transició recurrent (RTNs) com forma normal de gramàtiques incontextuals (CFGs) i s'empra el paradigma d'anàlisi sintàctic mitjançant composició de manera que l'anàlisi de CFGs resulta una lleugera extensió de l'anàlisi de FSA. Es proposen algorismes de composició de transductors que poden emprar RTNs i que no necessiten recorrer a la composició amb filtres fins i tot amb transicions nul.les i semianells no idempotents.
Es proposa una extensa revisió de LMs i algunes contribucions relacionades amb la seva interfície, amb la seva representació i amb l'avaluació de LMs basats en xarxes neuronals (NNLMs).
S'ha realitzat una revisió de SMs que inclou SMs basats en la combinació de models generatius i discriminatius, així com un esquema general de tipus d'emissió de trames i altre de SMs.
Es proposen versions especialitzades de l'algorisme de Viterbi per a models de lèxic que permeten emprar estats actius sense haver de recórrer a estructures de dades de tipus diccionari, i que trauen profit de la caché.
S'ha proposat una arquitectura de flux de dades o "dataflow" per obtindre diversos reconeixedors a partir d'un xicotet conjunt de peces amb un protocol de serialització de DAGs.
Descrivim generadors de DAGs capaços de tindre en compte restriccions sobre la segmentació, emprar models segmentals no limitats a HMMs, fer us dels decodificadors especialitzats proposats en aquest treball i emprar un transductor de control que permet emprar unitats dependents del contexte.
Els decodificadors de DAGs fan us d'una interfície de LMs prou general que ha segut extesa per permetre l'ús de RTNs.
Es proposen millores per a reconeixedors de tipus "un pas" basats en els algorismes especialitzats per a lèxics i en la interfície de LMs en mode "bunch", així com la seua paral.lelització.
La part experimental està centrada en el reconeiximent d'escriptura en diverses modalitats d'adquisició (offline, bimodal). Proposem un preprocés d'escriptura manuscrita evitant l'us d'heurístics geomètrics, en el seu lloc emprem xarxes neuronals. S'han emprat HMMs hibridats amb xarxes neuronals aconseguint, per a la base de dades IAM, alguns dels millors resultats publicats. També podem mencionar l'ús d'informació de sobre-segmentació, aproximacions sense restricció a un lèxic, experiments amb dades bimodals o la combinació de HMMs híbrids amb classificadors holístics. / España Boquera, S. (2016). Contributions to the joint segmentation and classification of sequences (My two cents on decoding and handwriting recognition) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62215 / Premios Extraordinarios de tesis doctorales
|
Page generated in 0.0909 seconds