• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Handover optimised authentication scheme for high mobility wireless multicast

Mapoka, Trust T., Shepherd, Simon J., Abd-Alhameed, Raed, Anoh, Kelvin O.O. January 2015 (has links)
No / In this paper a distributed handover optimized authentication scheme based on independent session key per access network (HOISKA) is developed for the decentralized multi-service group key management scheme over wireless mobile multicast. It enables a handover user Mi involved in multiple multicast service subscriptions to securely reuse the long term credential initially issued by the trusted authentication server (As) for deriving unique session keys per access network as it performs handover authentication across various access networks. The distributed nature of the scheme enables offloading the authentication function to the area network controllers (AKDs) such that As is not involved during handover exchange authentication signaling. This simplifies handover by reducing handover exchange signalling constituting to handover delays. Handover Access authentication (HAA) phase in HOISKA is presented then analyzed using the delay analytical model. The model proves efficacy by inducing minimum delays with less handover blocking probability while providing same level of security to the widely deployed handover authentication scheme.
2

Enhancing information security and privacy by combining biometrics with cryptography

KANADE, Sanjay Ganesh 20 October 2010 (has links) (PDF)
Securing information during its storage and transmission is an important and widely addressed issue. Generally, cryptographic techniques are used for information security. Cryptography requires long keys which need to be kept secret in order to protect the information. The drawback of cryptography is that these keys are not strongly linked to the user identity. In order to strengthen the link between the user's identity and his cryptographic keys, biometrics is combined with cryptography. In this thesis, we present various methods to combine biometrics with cryptography. With this combination, we also address the privacy issue of biometric systems: revocability, template diversity, and privacy protection are added to the biometric verification systems. Finally, we also present a protocol for generating and sharing biometrics based crypto-biometric session keys. These systems are evaluated on publicly available iris and face databases
3

Enhancing information security and privacy by combining biometrics with cryptography / La crypto-biométrie, une solution pour une meilleure sécurité tout en protégeant notre vie privée

Kanade, Sanjay Ganesh 20 October 2010 (has links)
La sécurité est un enjeu majeur de notre société numérique. En règle générale, les techniques cryptographiques sont utilisées pour sécuriser l'information avec des clés cryptographiques. Un inconvénient majeur de ces systèmes est le faible lien entre les clés et l’utilisateur. Avec la biométrie on a une preuve plus forte de la présence physique d’un individu, mais ces systèmes possèdent aussi leurs inconvénients, tels que la non-révocabilité ainsi que le potentiel de compromettre notre vie privée. Un axe de recherche multidisciplinaire se profile depuis 1998, la crypto-biométrie. Dans cette thèse des solutions innovantes sont proposées pour améliorer la sécurité tout en protégeant notre vie privée. Plusieurs systèmes crypto-biométriques sont proposés, tels que la biométrie révocable, des systèmes de régénérations de clés crypto-biométriques, ainsi qu’une proposition pratique d’un protocole d'authentification. Ces systèmes sont évaluées sur des bases de données publiques d'images de visage et d'iris / Securing information during its storage and transmission is an important and widely addressed issue. Generally, cryptographic techniques are used for information security. Cryptography requires long keys which need to be kept secret in order to protect the information. The drawback of cryptography is that these keys are not strongly linked to the user identity. In order to strengthen the link between the user's identity and his cryptographic keys, biometrics is combined with cryptography. In this thesis, we present various methods to combine biometrics with cryptography. With this combination, we also address the privacy issue of biometric systems: revocability, template diversity, and privacy protection are added to the biometric verification systems. Finally, we also present a protocol for generating and sharing biometrics based crypto-biometric session keys. These systems are evaluated on publicly available iris and face databases
4

Inter-device authentication protocol for the Internet of Things

Wilson, Preethy 18 May 2017 (has links)
The Internet of things (IoT) recently blossomed remarkably and has been transforming the everyday physical entities around us into an ecosystem of information that will enrich our lives in unimaginable ways. Authentication is one of the primary goals of security in the IoT and acts as the main gateway to a secure system which transmits confidential and/or private data.This thesis focuses on a Device-to-Device Mutual Authentication Protocol, designed for the smart home network, which is an essential component of communication in the Internet of Things(IoT). The protocol has been developed based on asymmetric cryptography to authenticate the devices in the network and for the devices to agree on a shared secret session key. In order to ensure the security of a communications session between the devices, the session keys are changed frequently - ideally after every communication session. The proposed scheme has been programmed in HLPSL, simulated and its efficiency verified using the SPAN/ AVISPA tool. When SPAN substantiates the protocol simulation and the attacker simulation, the back-ends of the AVISPA tool verifies the safety and security of the proposed authentication protocol. The thesis also evaluates the protocol's security against the attacks successful against protocols proposed by other researchers. / Graduate / 0544 / 0984 / 0537 / pwilson1@uvic.ca

Page generated in 0.0784 seconds