Spelling suggestions: "subject:"shallow groundwater"" "subject:"shallow roundwater""
1 |
Spatial and temporal mapping of shallow groundwater tables in the riparian zone of a Swedish headwater catchment / Kartering av ytliga grundvattennivåer inom den bäcknära zonen i ett svenskt avrinningsområdeHellstrand, Eva January 2012 (has links)
Understanding the hydrology of the riparian zone in a catchment can be an important prerequisite for determining solute loads and concentrations in streams. The riparian zone is the transition zone between surrounding landscape and an open water stream. This study focuses on the spatial and temporal variations of shallow groundwater levels in a forested headwater catchment in the Bergslagen area of central Sweden. Three snapshot campaigns were conducted during dry, humid and wet conditions to map the spatial variability of the groundwater levels. Piezometers giving the total hydraulic head were placed in the riparian zone along a stream network consisting of three first order streams and one second order stream. To asses temporal variations five groundwater wells were installed with automatic loggers to record continuous data during the wet period. Historical streamflow records from a permanent field station were collected and related to the groundwater levels in order to assess the relationship between groundwater levels and streamflow. Additionally a landscape analysis using GIS methods was conducted in order to identify potential drivers of spatial variation of groundwater levels in the riparian zone. The results showed that the slope could partially explain the observed spatial variability of riparian groundwater levels. The results from the spatially distributed piezometers and the continuously monitored groundwater wells with loggers were contradicting. Where the piezometers showed increasing depth to the groundwater table with increasing slope the loggers indicated the opposite. However, because the piezometers outnumbered the loggers the piezometer results can be considered more representative of the spatial variation of groundwater levels. There could be no general result concluded on the catchment scale but when looking at specific subcatchments it could be found that the variations in the riparian groundwater levels could be better explained where the stream had a more distinct channel. This indicates the importance to evaluate not only slope but the profile curvature as well for groundwater predictions.
|
2 |
Environmental sanitation situation and solute transport in variably saturated soil in peri-urban KampalaKulabako, Robinah January 2010 (has links)
The environmental sanitation situation in Kampala’s peri-urban areas was reviewed and investigated through field studies, structured interviews with personnel from key institutions and administration of questionnaires to households in a selected peri-urban settlement (Bwaise III Parish). In this settlement, specific field and laboratory measurements were undertaken so as to create a better understanding of the environmental sanitation situation, anthropogenic pollution loads and their transport and impact (with a focus on Phosphorus) in Kampala’s Peri-urban areas in pursuit of interventions for improving the environmental sanitation and protecting the shallow groundwater resource there. The review revealed that the urban poor in Kampala, like elsewhere in developing countries, are faced with inadequate basic services caused by a combination of institutional, legal and socio-economic issues and that the communities’ coping strategies are in most cases detrimental to their health and well-being. Field surveys showed that excreta disposal systems, solid waste and greywater are major contributors to the widespread shallow groundwater contamination in the area. Field measurements revealed that the water table responds rapidly to short rains (48 h) due to the pervious (10-5-10-3 m/s) and shallow (<1 mbgl) vadose zone, which consists of foreign material (due to reclamation). This anthropogenically influenced vadose zone has a limited contaminant attenuation capacity resulting in water quality deterioration following rains. The only operational spring in the area is fed by regional baseflow meaning a wider protection zone. The spring discharge exhibited microbial quality deterioration after rains primarily as a result of poor maintenance of the protection structure. Subsurface phosphorus (P) transport mechanisms appeared to be a combination of adsorption, precipitation, leaching from the soil media and through macropore flow with the latter two playing an important role in the wet season. The Langmuir isotherm described the phosphorus sorption data well (R2³ 0.95) and the best prediction of Langmuir sorption maximum (Cmax) had organic carbon, Ca and available phosphorus and soil pH as significant predictors. Loosely bound P (NH4Cl-P) was the least fraction (<0.4% of total P) in all layers indicating a high binding capacity of P by the soils implying that the soils have a capacity to adsorb additional P loads. Simulation results from the preliminary numerical model built in this study based on field and laboratory measurements indicate that rainfall infiltration rates > 7x10-3 mm/s drive shallow groundwater contamination with higher intense rains of relatively longer duration (³ 70 mm within 48 h) reducing phosphorus transport. Sensitivity analysis of the model input with respect to how long it takes to pollute the subsurfacehad the phosphorus sorption coefficients as being more influential than the pore size and air entry values. There are however, key contrasts between the model simulations and field observations which are useful in guiding new efforts in data collection. The study reveals that intervention measures to improve the environmental sanitation and protect the shallow groundwater in the peri-urban settlements are of a multidisciplinary nature necessitating action research with community participation. / QC 20100917
|
3 |
Application of Factor Analysis in the Identification of a Geochemical Signature of Buried Kimberlites in Near-surface Groundwaters in the Attawapiskat Area of the James Bay Lowlands of Northern Ontario, CanadaDrouin, Marc 24 May 2012 (has links)
In the James Bay Lowlands of northern Ontario, kimberlite pipes are concealed by peat, thick layers of till, and Tyrell sea sediments. Studies have shown that buried ore bodies produce geochemical signatures in surface media. This thesis explores the geochemistry of near-surface groundwater above concealed kimberlite pipes using factor analysis to determine whether (1) a factor analysis can reveal an underlying structure (factors) in a multivariate groundwater geochemical dataset, and whether (2) those factors are related to the presence of concealed kimberlite. Factor analysis was performed on two datasets of nearsurface groundwater, collected at 0.2 m and 1.1 m below ground surface in peat. Results revealed that (1) there is a significant difference in the behaviour of elements in groundwater near the surface compared to those in deeper groundwater, which is sheltered from the effects of the atmosphere; (2) for both datasets, the first factor is dominated by elements known to be enriched in kimberlite, notably rare earth elements (REE), U, Th, Ti – the composition of factor one is consistent with their derivation from kimberlite in a limestone background where such elements are in very low concentration; (3) high-valence and lowvalence kimberlite indicator elements (KIE) are found separated into distinct factors suggesting that once released from the kimberlite after weathering, KIE are subjected to various geochemical processes to be differentiated as they migrate upward to the surface; and (4) Fe and Mn load on a factor distinct from other metals, suggesting that in this environment Fe-Mn-O-OH is not a significant controller of metal mobility in groundwater. Overall, this research has further highlighted the multivariate nature of geochemical processes in groundwater. Compared with previous work in geochemical exploration where often only univariate or bivariate statistics or single element profiles over concealed ore bodies were used, this thesis has shown that factor analysis, as a multivariate data analysis technique, is a robust exploration tool, able to shed light on relevant geochemical processes hidden within geochemical datasets. This thesis shows that high-valence KIE, notably U,V, Th, Ti and the REE, as a group, are better indicators of the presence of kimberlites than other well-known KIE. Single element concentration profiles such as Ni or Cr (known KIE) show similar anomalies over a concealed kimberlite as a factor score profile for factor one (U, V, Th, Ti, REE, Ni) would; however, it is the peculiar assemblage of elements in factor one that makes it unique to kimberlites, a feature that can be used in future exploration work for concealed kimberlites in similar surficial environments, such as the Siberian wetlands. The results suggest that future geochemical exploration work involving groundwater should focus on the more stable groundwater located below the zone of oxidation, sheltered from the effects of the atmosphere.
|
4 |
Analysis of the impact of anthropogenic pollution on shallow groundwater in peri-urban KampalaKulabako, Robinah January 2005 (has links)
<p>An investigation to assess the anthropogenic pollutant loads, transport and impact on shallow groundwater in one of Kampala’s peri-urban areas (Bwaise III Parish) was undertaken. Bwaise III is a densely populated informal settlement with a high water table (<1.5 m) and inadequate basic social services infrastructure (e.g, sanitation, safe water supply, roads, etc).</p><p>Field surveys were undertaken to identify, locate and quantify various pollutant sources. Information on the usability and operational aspects of the excreta and solid waste management systems was obtained from consultations with the residents. Water from installed monitoring wells and one operational protected spring and wastewater (sullage) characteristics (quality, discharges for drains and spring, water levels for the wells) as well as soil characteristics (soil stratigraphy, physical and chemical) were determined through field and laboratory measurements. Laboratory batch experiments were undertaken to estimate phosphorus sorption potential of the soils.</p><p>The results reveal that excreta disposal systems, solid waste and sullage are the major contributors to shallow groundwater contamination. High contaminant loads from these sources accumulate within the area resulting in widespread contamination. The water table responds rapidly to short rains (48hr) due to the pervious and shallow (<1 m) vadose zone, which consists of mostly organic fill material. Rapid water quality deterioration (increased thermotolerant coliforms, organic content in the form of total kjedahl nitrogen, phosphorus) following rains potentially follows from leaching, desorption and macropore flow. Spatial variation of the water quality in the area is largely related to anthropogenic activities within the vicinity of the well sources. Animal rearing, solid waste dumps and latrines are seen to result in increased localised microbial and organic content during the rains. The spring discharge with high nitrate levels does not respond to short rains suggesting that this source is fed by regional baseflow. The corresponding high microbial contamination in this case is a result of observed poor maintenance of the protection structure leading to direct ingress of contaminated surface runoff. Natural attenuation of contaminants is very limited. Estimated bacteria die-off rates are very low, about 0.01hr-1, suggesting a high risk for microbial contamination. The soils still have potential to retain additional phosphorus, whose sorption is largely a function of iron, available phosphorus and moisture content of the soils. This is also seen with the model results in which the phosphorus contaminant plume sticks to the surface irrespective of the rainfall infiltration rates. Simulation results show that continuous heavy intense rains (> 0.25mm/min) result in rapid flooding occurring within 1hr to 2 days. With lower rains, the water table does not rise to the surface, and no flooding takes place.</p><p>Protection of the shallow groundwater in the area requires socio-technical measures targeting reduction of pollutant loads within the area as well as a wider spring catchment. Re-protection of the spring, coupled with awareness creation, should be immediately addressed so as to reduce microbial contamination. Community participation in solidwaste management should be encouraged. Resource recovery systems such as composting of the mostly organic waste and use of ecological sanitation toilet systems should be piloted in the area. Successful operation of the systems however depends on continuous sensitisation of the communities.</p><p>An investigation to assess the anthropogenic pollutant loads, transport and impact on shallow groundwater in one of Kampala’s peri-urban areas (Bwaise III Parish) was undertaken. Bwaise III is a densely populated informal settlement with a high water table (<1.5 m) and inadequate basic social services infrastructure (e.g, sanitation, safe water supply, roads, etc).</p><p>Field surveys were undertaken to identify, locate and quantify various pollutant sources. Information on the usability and operational aspects of the excreta and solid waste management systems was obtained from consultations with the residents. Water from installed monitoring wells and one operational protected spring and wastewater (sullage) characteristics (quality, discharges for drains and spring, water levels for the wells) as well as soil characteristics (soil stratigraphy, physical and chemical) were determined through field and laboratory measurements. Laboratory batch experiments were undertaken to estimate phosphorus sorption potential of the soils.</p><p>The results reveal that excreta disposal systems, solid waste and sullage are the major contributors to shallow groundwater contamination. High contaminant loads from these sources accumulate within the area resulting in widespread contamination. The water table responds rapidly to short rains (48hr) due to the pervious and shallow (<1 m) vadose zone, which consists of mostly organic fill material. Rapid water quality deterioration (increased thermotolerant coliforms, organic content in the form of total kjedahl nitrogen, phosphorus) following rains potentially follows from leaching, desorption and macropore flow. Spatial variation of the water quality in the area is largely related to anthropogenic activities within the vicinity of the well sources. Animal rearing, solid waste dumps and latrines are seen to result in increased localised microbial and organic content during the rains. The spring discharge with high nitrate levels does not respond to short rains suggesting that this source is fed by regional baseflow. The corresponding high microbial contamination in this case is a result of observed poor maintenance of the protection structure leading to direct ingress of contaminated surface runoff. Natural attenuation of contaminants is very limited. Estimated bacteria die-off rates are very low, about 0.01hr-1, suggesting a high risk for microbial contamination. The soils still have potential to retain additional phosphorus, whose sorption is largely a function of iron, available phosphorus and moisture content of the soils. This is also seen with the model results in which the phosphorus contaminant plume sticks to the surface irrespective of the rainfall infiltration rates. Simulation results show that continuous heavy intense rains (> 0.25mm/min) result in rapid flooding occurring within 1hr to 2 days. With lower rains, the water table does not rise to the surface, and no flooding takes place.</p><p>Protection of the shallow groundwater in the area requires socio-technical measures targeting reduction of pollutant loads within the area as well as a wider spring catchment. Re-protection of the spring, coupled with awareness creation, should be immediately addressed so as to reduce microbial contamination. Community participation in solidwaste management should be encouraged. Resource recovery systems such as composting of the mostly organic waste and use of ecological sanitation toilet systems should be piloted in the area. Successful operation of the systems however depends on continuous sensitisation of the communities.</p>
|
5 |
Geochemistry of Trace Elements in the Bolivian Altiplano : Effects of natural processes and anthropogenic activitiesRamos Ramos, Oswaldo Eduardo January 2014 (has links)
The occurrence of As in groundwater in Argentina was known since 1917; however, the occurrence, distribution and mobilization of As and other trace elements (TEs) in groundwater in the Bolivian Altiplano are still quite unknown. An investigation applying a geochemical approach was conducted in the Poopó Basin and Lake Titicaca to understand processes of TEs in different systems such as water, soils, crops and sediments in mining areas. In Poopó Basin,As, Cd and Mn concentrations exceed World Health Organization (WHO) guidelines and Bolivian regulations for drinking water in different places around the basin, but Cu, Ni, Pb and Zn do not. In soils, the sequential extraction methods extracted up to 12% (fractions 1 and 2), which represent < 3.1 mg/kg of the total As content, as potentially mobilized fractions, that could be transferred to crops and/or dissolved in hydrologic system. The large pool of As can be attached due to amorphous and crystalline Fe oxide surfaces (fractions 3, 4, and 5) present in the soils. Furthermore, the concentrations of As, Cd and Pb in the edible part of the crops revealed that the concentrations of As and Cd do not exceed the international regulation (FAO, WHO, EC, Chilean) (0.50 mg/kgfw for As and 0.10 mg/kgfw for Cd), while Pb exceeds the international regulations for beans and potatoes (for beans 0.20 mg/kgfw and for potato 0.10 mg/kgfw). In the Lake Titicaca, principal component analysis (PCA) of TEs in sediments suggests that the Co-Ni-Cd association can be attributed to natural sources such as rock mineralization, while Cu-Fe-Mn come from effluents and mining activities, whereas Pb-Zn are mainly related to mining activities. The Risk Assessment Code (RAC) indicate “moderately to high risk” for mobilization of Cd, Co, Mn, Ni, Pb and Zn, while Cu and Fe indicate “low to moderate risk” for remobilization in the water column. / <p>QC 20140604</p> / Hydrochemistry: Arsenic and heavy metals in the Lake Poopó Basin (Sida contribution: 7500707606) / Catchment Management and Mining Impacts in Arid and semi-arid South America (CAMINAR) (INCO-CT-2006-032539)
|
6 |
Application of Factor Analysis in the Identification of a Geochemical Signature of Buried Kimberlites in Near-surface Groundwaters in the Attawapiskat Area of the James Bay Lowlands of Northern Ontario, CanadaDrouin, Marc 24 May 2012 (has links)
In the James Bay Lowlands of northern Ontario, kimberlite pipes are concealed by peat, thick layers of till, and Tyrell sea sediments. Studies have shown that buried ore bodies produce geochemical signatures in surface media. This thesis explores the geochemistry of near-surface groundwater above concealed kimberlite pipes using factor analysis to determine whether (1) a factor analysis can reveal an underlying structure (factors) in a multivariate groundwater geochemical dataset, and whether (2) those factors are related to the presence of concealed kimberlite. Factor analysis was performed on two datasets of nearsurface groundwater, collected at 0.2 m and 1.1 m below ground surface in peat. Results revealed that (1) there is a significant difference in the behaviour of elements in groundwater near the surface compared to those in deeper groundwater, which is sheltered from the effects of the atmosphere; (2) for both datasets, the first factor is dominated by elements known to be enriched in kimberlite, notably rare earth elements (REE), U, Th, Ti – the composition of factor one is consistent with their derivation from kimberlite in a limestone background where such elements are in very low concentration; (3) high-valence and lowvalence kimberlite indicator elements (KIE) are found separated into distinct factors suggesting that once released from the kimberlite after weathering, KIE are subjected to various geochemical processes to be differentiated as they migrate upward to the surface; and (4) Fe and Mn load on a factor distinct from other metals, suggesting that in this environment Fe-Mn-O-OH is not a significant controller of metal mobility in groundwater. Overall, this research has further highlighted the multivariate nature of geochemical processes in groundwater. Compared with previous work in geochemical exploration where often only univariate or bivariate statistics or single element profiles over concealed ore bodies were used, this thesis has shown that factor analysis, as a multivariate data analysis technique, is a robust exploration tool, able to shed light on relevant geochemical processes hidden within geochemical datasets. This thesis shows that high-valence KIE, notably U,V, Th, Ti and the REE, as a group, are better indicators of the presence of kimberlites than other well-known KIE. Single element concentration profiles such as Ni or Cr (known KIE) show similar anomalies over a concealed kimberlite as a factor score profile for factor one (U, V, Th, Ti, REE, Ni) would; however, it is the peculiar assemblage of elements in factor one that makes it unique to kimberlites, a feature that can be used in future exploration work for concealed kimberlites in similar surficial environments, such as the Siberian wetlands. The results suggest that future geochemical exploration work involving groundwater should focus on the more stable groundwater located below the zone of oxidation, sheltered from the effects of the atmosphere.
|
7 |
An Evaluation of the Water Lifting Limit of a Manually Operated Suction Pump: Model Estimation and Laboratory AssessmentMarshall, Katherine C. 27 October 2017 (has links)
With 663 million people still without access to an improved drinking water source, there is no room for complacency in the pursuit of Sustainable Development Goal (SDG) Target 6.1: “universal and equitable access to safe and affordable drinking water for all” by 2030 (WHO, 2017). All of the current efforts related to water supply service delivery will require continued enthusiasm in diligent implementation and thoughtful evaluation. This cannot be over-emphasized in relation to rural inhabitants of low-income countries (LICs), as they represent the largest percentage of those still reliant on unimproved drinking water sources. In that lies the motivation and value of this thesis research- improving water supply service delivery in LICs.
Manually operated suction pumps, being relatively robust, low cost, and feasible to manufacture locally, are an important technology in providing access to improved drinking water sources in LICs, especially in the context of Self-supply. It seems widely accepted that the water-lifting limit of suction pumps as reported in practice is approximately seven meters. However, some observations by our research group of manually operated suction pumps lifting water upwards of nine meters brought this “general rule of thumb” limit into question. Therefore, a focused investigation on the capabilities of a manually operated suction pump (a Pitcher Pump) was conducted in an attempt to address these discrepancies, and in so doing, contribute to the understanding of this technology with the intent of providing results with practical relevance to its potential; that is, provide evidence that can inform the use of these pumps for water supply.
In this research, a simple model based on commonly used engineering approaches employing empirical equations to describe head loss in a pump system was used to estimate the suction lift limit under presumed system parameters. Fundamentally based on the energy equation applied to incompressible flow in pipes, the empirically derived Darcy-Weisbach equation and Hydraulic Institute Standards acceleration head equation were used to estimate frictional and acceleration head losses. Considering the theoretical maximum suction lift is limited to the height of a column of water that would be supported by atmospheric pressure, reduced only by the vapor pressure of water, subtracting from this the model was used to predict the suction lift limit, also referred to herein as the practical theoretical limit, assuming a low (4 L/min) and high (11 L/min) flow rate for three systems: 1) one using 1.25-inch internal diameter GI pipes, 2) one using 1.25-inch internal diameter PVC pipes, and 3) one using 2-inch internal diameter PVC pipes. In all considered cases, with an elevation equal to sea level, the suction lift limit was estimated to be over nine meters. At a minimum, the suction lift limit was estimated to be approximately 9.4 meters for systems using 1.25-inch internal diameter pipe and 9.8 meters for systems using 2-inch internal diameter pipe, with essentially no discernable effects noticed between pipe material or pipe age. Additionally, laboratory (field) trials using a Simmons Manufacturing Picher Pump and each of the aforementioned pipe specifications were conducted at the University of South Florida (Tampa, FL, USA) to determine the practical pumping limit for these systems. Results from the pumping trials indicated that the practical pumping limit- the greatest height at which a reasonable pumping rate could be consistently sustained with only modest effort, as perceived by the person pumping- for a Pitcher Pump is around nine meters (9 meters when using 1.25-inch internal diameter GI or PVC pipe and 9.4 meters when using 2-inch internal diameter PVC pipe). Therefore, results from this research present two pieces of evidence which suggest that the practical water-lifting limit of manually operated suction pumps is somewhere around nine meters (at sea level), implying that reconsideration of the seven-meter suction lift limit commonly reported in the field might be warranted.
|
8 |
Application of Factor Analysis in the Identification of a Geochemical Signature of Buried Kimberlites in Near-surface Groundwaters in the Attawapiskat Area of the James Bay Lowlands of Northern Ontario, CanadaDrouin, Marc January 2012 (has links)
In the James Bay Lowlands of northern Ontario, kimberlite pipes are concealed by peat, thick layers of till, and Tyrell sea sediments. Studies have shown that buried ore bodies produce geochemical signatures in surface media. This thesis explores the geochemistry of near-surface groundwater above concealed kimberlite pipes using factor analysis to determine whether (1) a factor analysis can reveal an underlying structure (factors) in a multivariate groundwater geochemical dataset, and whether (2) those factors are related to the presence of concealed kimberlite. Factor analysis was performed on two datasets of nearsurface groundwater, collected at 0.2 m and 1.1 m below ground surface in peat. Results revealed that (1) there is a significant difference in the behaviour of elements in groundwater near the surface compared to those in deeper groundwater, which is sheltered from the effects of the atmosphere; (2) for both datasets, the first factor is dominated by elements known to be enriched in kimberlite, notably rare earth elements (REE), U, Th, Ti – the composition of factor one is consistent with their derivation from kimberlite in a limestone background where such elements are in very low concentration; (3) high-valence and lowvalence kimberlite indicator elements (KIE) are found separated into distinct factors suggesting that once released from the kimberlite after weathering, KIE are subjected to various geochemical processes to be differentiated as they migrate upward to the surface; and (4) Fe and Mn load on a factor distinct from other metals, suggesting that in this environment Fe-Mn-O-OH is not a significant controller of metal mobility in groundwater. Overall, this research has further highlighted the multivariate nature of geochemical processes in groundwater. Compared with previous work in geochemical exploration where often only univariate or bivariate statistics or single element profiles over concealed ore bodies were used, this thesis has shown that factor analysis, as a multivariate data analysis technique, is a robust exploration tool, able to shed light on relevant geochemical processes hidden within geochemical datasets. This thesis shows that high-valence KIE, notably U,V, Th, Ti and the REE, as a group, are better indicators of the presence of kimberlites than other well-known KIE. Single element concentration profiles such as Ni or Cr (known KIE) show similar anomalies over a concealed kimberlite as a factor score profile for factor one (U, V, Th, Ti, REE, Ni) would; however, it is the peculiar assemblage of elements in factor one that makes it unique to kimberlites, a feature that can be used in future exploration work for concealed kimberlites in similar surficial environments, such as the Siberian wetlands. The results suggest that future geochemical exploration work involving groundwater should focus on the more stable groundwater located below the zone of oxidation, sheltered from the effects of the atmosphere.
|
9 |
Modeling for delineation of protection areas for shallow groundwater resources in peri-urban areas.Liu, Ting January 2012 (has links)
Bwaise III in Kampala, Uganda is a densely populated informal settlement with a shallow groundwater table and inadequate basic services. High risk of groundwater contamination will bring health problem to the local residents. In this study, a large dimension (300 m in length) 2D model was developed to depict the hydrogeological condition and to examine the response to different rainfall infiltration rate on the groundwater table. The boundary condition of the drainage system plays an important role in modeling the groundwater flow. The simulation results show that water in the drain will flow into the aquifer when the drain is full, otherwise the drain will act as a sink for ground water. Advective transport of phosphorus results in no pollutants reaching or percolating into the drain. The integration of phosphorous concentra-tion flowing out of Domain 3 (pollutant inlet) corresponds to the infiltration rate and the plume moves faster during the wet season which brings in more phosphorous compared with the dry season. With sorption, all the phosphorus was adsorbed within the top soil. A simplified 3D model was set up to illustrate the flow field. Additional simulation can be undertaken within this 3D frame for more realistic calculation and consistent prediction.
|
10 |
Using Machine Learning to predict water table levels in a wet prairie in Northwest OhioMore, Priyanka Ramesh 26 November 2018 (has links)
No description available.
|
Page generated in 0.0458 seconds