• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COUPLED DYNAMICS OF HEAT TRANSFER AND FLUID FLOW IN SHEAR RHEOMETRY

Sridharan, Harini 26 August 2020 (has links)
No description available.
2

Evaluation of the critical parameters and polymeric coat performance in compressed multiparticulate systems

Benhadia, Abrehem M.A. January 2019 (has links)
Compression of coated pellets is a practical alternative to capsule filling. The current practice is to add cushioning agents to minimize the stress on the coated pellets. Cushioning agents however add bulkiness and reduce the overall drug loading capacity. In this study, we investigated the performance of compressed coated pellets with no cushioning agent to evaluate the feasibility of predicting the coat behaviour using thermo-mechanical and rheological analysis techniques. Different coating formulations were made of ethyl cellulose (EC) as a coating polymer and two different kinds of additives were incorporated into the polymeric coating solution. Triethyl Citrate (TEC) and Polyethylene glycol 400(PEG400) were used as plasticizers at different levels to the coating formulations (10%, 20%, 30%). Thermal, mechanical and rheological measurements of the coating film formulations were achieved to investigate the effect of plasticizers. Thermal gravimetric analysis results (TGA) showed higher residual moisture content in films plasticised with PEG 400 compared to their TEC counterparts. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and Parallel Plate Shear Rheometer (PPSR) were used to study the influence of the level and type of plasticisers incorporated in coating film formulation on the performance of the coating film. In this study, both DSC and DMA were used to investigate the Tg for each film coating formulation in order to evaluate the effect of the additives. In general DMA results for the Tg value of the films were always higher by 10-20% than those measured by the DSC. Furthermore, clamp size and the frequency of the oscillation have an influence on the evaluation of Tg. Complex viscosity for different coating film formulations revealed that the shear hinning gradient changes with temperature and plasticiser type and concentration. The value of complex viscosity from DMA and PPSR exhibits power law behaviour. The rheological moduli were indirectly affected by the level of plasticiser. There was a discrepancy between the complex viscosity results obtained from both DMA and PPSR at similar temperature but they follow the same trend. The non plasticized polymer showed a 10 time higher complex viscosity values when measured by DMA over that measured by PPSR. The difference was smaller in plasticized films but it was not consistent. Therefore a consistent coefficient to correlate the DMA and PPSR couldn’t be accurately determined Coated pellets were compressed and key process parameters were evaluated. The obtained results revealed that the coating thickness has a significant effect on the release profile of the final products. It was found that by increasing the coating film thickness, the percentage released decreased. Also the compression force has lower influence on the drug release profile, while the dwell time has very low effect on the percentage release from the final products. Optimum release profile was obtained at a coating level of 5.5% w/w and a compression force of 4700N In conclusion, the elasticity of the plasticised EC films in this study meant that the internal stress is not dissipated during compression and the dwell time range that was used in this experiment. Increasing the thickness therefore was necessary to enhance the strength of the film and avoid cracking. The mechanical and rheological profiling was helpful therefore to understand the behaviour of the coated pellets and predict the film properties at various steps of the process of coating and compression (i.e., various shear rate regimes). Experimental design approach to studying the key process and formulation parameters helped identify the optimum values for the process.
3

Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations : effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysis

Isreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process parameters are generally selected using a trial-and-error approach. However, coating problems and defects, especially those associated with aqueous coating systems, indicate the necessity of embracing a quality-by-design approach to identify the optimum coating parameters. In this study, the feasibility of using thermal and rheological measurements to help evaluate and design novel coating formulations has been investigated. Hydroxypropyl methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was used as the film forming polymer. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery (PPSR) were used to evaluate the effect of different plasticisers on the performance of HPMCAS. The results illustrate that, for identical formulations, the DSC and DMA methods yielded up to 40% differences in glass transition temperature (Tg) values. Moreover, Tg measured using loss modulus signals were always 20-30 oC less than those measured using tan delta results in DMA testing. Absolute and relative Tg values can significantly vary depending on the geometry of the samples, clamp size, temperature ramping rate and the frequency of the oscillations. Complex viscosity data for different formulations demonstrated a variable shear thinning behaviour and a Tg independent ranking. It is, therefore, insufficient to rely purely on Tg values to determine the relative performance of additives. In addition, complex viscosity results, obtained using both the DMA and PPSR techniques at similar temperatures, are shown to be comparable. The results from both techniques were therefore used to produce continuous master curves for the HPMCAS formulations. Additionally, step strain tests showed that HPMCAS chains do not fully III disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.
4

Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations. Effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysis.

Isreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process parameters are generally selected using a trial-and-error approach. However, coating problems and defects, especially those associated with aqueous coating systems, indicate the necessity of embracing a quality-by-design approach to identify the optimum coating parameters. In this study, the feasibility of using thermal and rheological measurements to help evaluate and design novel coating formulations has been investigated. Hydroxypropyl methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was used as the film forming polymer. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery (PPSR) were used to evaluate the effect of different plasticisers on the performance of HPMCAS. The results illustrate that, for identical formulations, the DSC and DMA methods yielded up to 40% differences in glass transition temperature (Tg) values. Moreover, Tg measured using loss modulus signals were always 20-30 oC less than those measured using tan delta results in DMA testing. Absolute and relative Tg values can significantly vary depending on the geometry of the samples, clamp size, temperature ramping rate and the frequency of the oscillations. Complex viscosity data for different formulations demonstrated a variable shear thinning behaviour and a Tg independent ranking. It is, therefore, insufficient to rely purely on Tg values to determine the relative performance of additives. In addition, complex viscosity results, obtained using both the DMA and PPSR techniques at similar temperatures, are shown to be comparable. The results from both techniques were therefore used to produce continuous master curves for the HPMCAS formulations. Additionally, step strain tests showed that HPMCAS chains do not fully III disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.
5

SHEAR RHEOMETRY PROTOCOLS TO ADVANCE THE DEVELOPMENT OF MICROSTRUCTURED FLUIDS

Eduard Andres Caicedo Casso (6620462) 15 May 2019 (has links)
<p></p><p>This doctoral dissertation takes the reader through a journey where applied shear rheology and flow-velocimetry are used to understand the mesoscopic factors that control the flow behavior of three microstructured fluids. Three individual protocols that measure relative physical and mechanical properties of the flow are developed. Each protocol aims to advance the particular transformation of novel soft materials into a commercial product converging in the demonstration of the real the chemical, physical and thermodynamical factors that could potentially drive their successful transformation. </p> <p> </p> <p>First, this dissertation introduces the use of rotational and oscillatory shear rheometry to quantify the solvent evaporation effect on the flow behavior of polymer solutions used to fabricate isoporous asymmetric membranes. Three different A-B-C triblock copolymer were evaluated: polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(4-vinylpyridine) (ISV); polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(<i>N</i>,<i>N</i>-dimethylacrylamide) (ISD); and polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) (ISB). The resulting evaporation-induced microstructure showed a solution viscosity and film viscoelasticity strongly dependent on the chemical structure of the triblock copolymer molecules. </p> <p> </p> <p>Furthermore, basic shear rheometry, flow birefringence, and advanced flow-velocimetry are used to deconvolute the flow-microstructure relationships of concentrated surfactant solutions. Sodium laureth sulfate in water (SLE<sub>1</sub>S) was used to replicate spherical, worm-like, and hexagonally packed micelles and lamellar structures. Interesting findings demonstrated that regular features of flow curves, such as power-law shear thinning behavior, resulted from a wide variety of experimental artifacts that appeared when measuring microstructured fluids with shear rheometry.</p> <p> </p> <p>Finally, the successful integration of shear rheometry to calculate essential parameters to be used in a cost-effective visualization technique (still in development) used to calculate the dissolution time of polymers is addressed. The use of oscillatory rheometry successfully quantify the viscoelastic response of polyvinyl alcohol (PVA) solutions and identify formulations changes such as additive addition. The flow behavior of PVA solutions was correlated to dissolution behavior proving that the developed protocol has a high potential as a first screening tool.</p><br><p></p>

Page generated in 0.1083 seconds