• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 396
  • 304
  • 135
  • 72
  • 52
  • 42
  • 28
  • 16
  • 12
  • 8
  • 7
  • 7
  • 6
  • 4
  • 4
  • Tagged with
  • 1223
  • 277
  • 273
  • 192
  • 187
  • 176
  • 171
  • 143
  • 142
  • 122
  • 119
  • 116
  • 112
  • 110
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Blank optimization in sheet metal forming using finite element simulation

Goel, Amit 12 April 2006 (has links)
The present study aims to determine the optimum blank shape design for the deep drawing of arbitrary shaped cups with a uniform trimming allowance at the flange i.e. cups without ears. This earing defect is caused by planar anisotropy in the sheet and the friction between the blank and punch/die. In this research, a new method for optimum blank shape design using finite element analysis has been proposed. Explicit non-linear finite element (FE) code LSDYNA is used to simulate the deep drawing process. FE models are constructed incorporating the exact physical conditions of the process such as tooling design like die profile radius, punch corner radius, etc., material used, coefficient of friction, punch speed and blank holder force. The material used for the analysis is mild steel. A quantitative error metric called shape error is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. This error metric is then used to decide whether the blank needs to be modified or not. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. In order to verify the proposed method, examples of square cup and cylindrical cup have been investigated. In every case converged results are achieved after a few iterations. So through the investigation the proposed systematic method of optimal blank design is found to be very effective in the deep drawing process and can be further applied to other stamping applications.
152

The function of yeast frataxin in iron-sulfur cluster biogenesis : a systematic mutagenesis of solvent-exposed side chains of the beta-sheet platform

Leidgens, Sébastien 26 September 2008 (has links)
Friedreich's ataxia is a neurodegenerative disorder caused by the low expression of a mitochondrial protein called frataxin. Studies in the yeast Saccharomyces cerevisiae have unraveled a role for the frataxin homologue (Yfh1p) in iron-sulfur cluster (Fe/S) biosynthesis, probably by interacting with the scaffold protein, Isu1p, and providing iron to the machinery. Yfh1p possesses a large â-sheet platform that may be involved in the interaction with other proteins through conserved residues at its surface. We have used directed mutagenesis associated with polymerase chain reaction (PCR) to study conserved residues localizing either at the surface of the protein, Thr110, Thr118, Val120, Asn122, Gln124, Gln129, Trp131, Ser137 and Arg141, or buried in the core of the protein, Ile130 and Leu132. Mutants T110A, T118A, V120A, N122A, Q124A, Q129A, I130A, W131A, L132A, S137A and R141A were generated in yeast. Growth on iron- or copper-containing medium was severely impaired for mutants Q129A, I130A, W131A and R141A. Others were roughly growing as well as the wild-type strain. We assessed the efficiency of Fe/S biosynthesis by measuring aconitase activity. The results confirmed those obtained on metal-containing medium: mutants Q129A, I130A, W131A and R141A showed a high decrease in their aconitase activity that dropped to the deleted strain level. Moreover, S137A showed also a decreased aconitase activity. We monitored the interaction between Yfh1p and Isu1p by co-immunoprecipitation and it turned out that only the W131A mutation affects directly this interaction. Even if the amount of Yfh1p determined by western blot analysis was highly decreased for several mutants, it is not sufficient to explain the phenotypes as they were poorly restored by overexpression of the mutant proteins to wild-type levels, except for W131F. We have concluded that Gln129, Trp131, and Arg141 are important for Yfh1p function, while Ile130 and Ser137 are required for the folding of the protein. All these residues cluster to the 4th and 5th â-strand of the protein. Our work has demonstrated for the first time the importance of this area for Yfh1p function and shows that Trp131 is involved in the interaction with Isu1p.
153

Wear in sheet metal forming

Gåård, Anders January 2008 (has links)
The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures. Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.
154

Mountain centered icefields in northern Scandinavia

Fredin, Ola January 2004 (has links)
Mountain centered glaciers have played a major role throughout the last three million years in the Scandinavian mountains. The climatic extremes, like the present warm interglacial or cold glacial maxima, are very short-lived compared to the periods of intermediate climate conditions, characterized by the persistence of mountain based glaciers and ice fields of regional size. These have persisted in the Scandinavian mountains for about 65% of the Quaternary. Mountain based glaciers thus had a profound impact on large-scale geomorphology, which is manifested in large-scale glacial landforms such as fjords, glacial lakes and U-shaped valleys in and close to the mountain range. Through a mapping of glacial landforms in the northern Scandinavian mountain range, in particular a striking set of lateral moraines, this thesis offers new insights into Weichselian stages predating the last glacial maximum. The aerial photograph mapping and field evidence yield evidence that these lateral moraines were overridden by glacier ice subsequent to their formation. The lateral moraines were dated using terrestrial cosmogenic nuclide techniques. Although the terrestrial cosmogenic nuclide signature of the moraines is inconclusive, an early Weichselian age is tentatively suggested through correlations with other landforms and stratigraphical archives in the region. The abundance and coherent spatial pattern of the lateral moraines also allow a spatial reconstruction of this ice field. The ice field was controlled by topography and had nunataks protruding also where it was thickest close to the elevation axis of the Scandinavian mountain range. Outlet glaciers discharged into the Norwegian fjords and major valleys in Sweden. The process by which mountain based glaciers grow into an ice sheet is a matter of debate. In this thesis, a feedback mechanism between debris on the ice surface and ice sheet growth is presented. In essence, the growth of glaciers and ice sheets may be accelerated by an abundance of debris in their ablation areas. This may occur when the debris cover on the glacier surface inhibits ablation, effectively increasing the glaciers mass balance. It is thus possible that a dirty ablation area may cause the glacier to advance further than a clean glacier under similar conditions. An ice free period of significant length allows soil production through weathering, frost shattering, and slope processes. As glaciers advance through this assemblage of sediments, significant amounts of debris end up on the surface due to both mass wastage and subglacial entrainment. Evidence that this chain of events may occur, is given by large expanses of hummocky moraine (local name Veiki moraine) in the northern Swedish lowlands. Because the Veiki moraine has been correlated with the first Weichselian advance following the Eemian, it implies a heavily debris charged ice sheet emanating from the mountain range and terminating in a stagnant fashion in the lowlands.
155

Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy Sheet

Imbert Boyd, Jose January 2005 (has links)
This thesis presents the results of experimental and numerical work carried out to determine if electromagnetic forming (EMF) increases the formability of aluminum alloy sheet and, if so, to determine the mechanisms that play a role in the increased formability. To this end, free form (open cavity) and conical in-die samples were produced to isolate high strain rate constitutive and inertial effects from the effects of the interaction between the die and the sheet. Aluminum alloys AA5754 and AA6111 in the form of 1mm sheet were chosen since they are currently used in automotive production and are candidates for lightweight body panels. The experiments showed significant increases in formability in the conical die samples in areas where significant contact with the tool occurred, with no significant increase recorded for the free-formed samples. This indicates that the tool/sheet interaction is playing the dominant role in the increase in formability observed. Metallographic and fractographic analysis performed on the samples showed evidence of microvoid damage suppression, which may be a contributing factor to the increase in formability. Numerical modeling was undertaken to analyse the details of the forming operation and to determine the mechanisms behind the increased formability. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Microvoid damage evolution was predicted using a microvoid damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. From the models it has been determined that the free forming process is essentially a plane-stress process. In contrast, the tool/sheet interaction produced in cone forming makes the process unique. When the sheet makes contact with the tool, it is subject to forces generated due to the impact, and very rapid bending and straightening. These combine to produce complex non-linear stress and strain histories, which render the process non-plane stress and thus make it significantly different from conventional sheet forming processes. Another characteristic of the process is that the majority of the plastic deformation occurs at impact, leading to strain rates on the order of 10,000 s<sup>-1</sup>. It is concluded that the rapid impact, bending and straightening that results from the tool/sheet interaction is the main cause of the increased formability observed in EM forming.
156

Implementing Higher Order Dynamics into the Ice Sheet Model SICOPOLIS

Ahlkrona, Josefin January 2011 (has links)
Ice sheet modeling is an important tool both for reconstructing past ice sheets and predicting their future evolution, but is complex and computationally costly. It involves modeling a system including the ice sheet, ice shelves and ice streams, which all have different dynamical behavior. The governing equations are non-linear, and to capture a full glacial cycle more than 100,000 years need to be simulated. To reduce the problem size, approximations of the equations are introduced. The most common approximation, the Shallow Ice Approximation (SIA), works well in the ice bulk but fails in e.g. the modeling of ice streams and the ice sheet/ice shelf coupling. In recent years more accurate models, so-called higher order models, have been constructed to address these problems. However, these models are generally constructed in an ad hoc fashion, lacking rigor. In this thesis, so-called Second Order Shallow Ice Approximation (SOSIA) equations for pressure, vertical shear stress and velocity are implemented into the ice sheet model SICOPOLIS. The SOSIA is a rigorous model derived by Baral in 1999 [3]. The numerical solution for a simple model problem is compared to an analytical solution, and benchmark experiments, comparing the model to other higher order models, are carried out. The numerical and analytical solution agree well, but the results regarding vertical shear stress and velocity differ from other models. It is concluded that there are problems with the model implemented, most likely in the treatment of the relation between stress and strain rate.
157

Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy Sheet

Imbert Boyd, Jose January 2005 (has links)
This thesis presents the results of experimental and numerical work carried out to determine if electromagnetic forming (EMF) increases the formability of aluminum alloy sheet and, if so, to determine the mechanisms that play a role in the increased formability. To this end, free form (open cavity) and conical in-die samples were produced to isolate high strain rate constitutive and inertial effects from the effects of the interaction between the die and the sheet. Aluminum alloys AA5754 and AA6111 in the form of 1mm sheet were chosen since they are currently used in automotive production and are candidates for lightweight body panels. The experiments showed significant increases in formability in the conical die samples in areas where significant contact with the tool occurred, with no significant increase recorded for the free-formed samples. This indicates that the tool/sheet interaction is playing the dominant role in the increase in formability observed. Metallographic and fractographic analysis performed on the samples showed evidence of microvoid damage suppression, which may be a contributing factor to the increase in formability. Numerical modeling was undertaken to analyse the details of the forming operation and to determine the mechanisms behind the increased formability. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Microvoid damage evolution was predicted using a microvoid damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. From the models it has been determined that the free forming process is essentially a plane-stress process. In contrast, the tool/sheet interaction produced in cone forming makes the process unique. When the sheet makes contact with the tool, it is subject to forces generated due to the impact, and very rapid bending and straightening. These combine to produce complex non-linear stress and strain histories, which render the process non-plane stress and thus make it significantly different from conventional sheet forming processes. Another characteristic of the process is that the majority of the plastic deformation occurs at impact, leading to strain rates on the order of 10,000 s<sup>-1</sup>. It is concluded that the rapid impact, bending and straightening that results from the tool/sheet interaction is the main cause of the increased formability observed in EM forming.
158

The relation between surface activity and fiber-bond strength in a papermaking pulp

Allison, Henry Johnston 01 January 1940 (has links)
No description available.
159

Determination of the exposed surface area of pulp fibers from air permeability measurements, using a modified Kozeny equation

Brown, Joseph C. (Joseph Clifford) 01 January 1949 (has links)
No description available.
160

The study of the colloidal and physical phenomena relating to freeness and stock drainage

Reed, Robert W. 06 1900 (has links)
No description available.

Page generated in 0.0245 seconds