• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 396
  • 304
  • 135
  • 72
  • 52
  • 42
  • 28
  • 16
  • 12
  • 8
  • 7
  • 7
  • 7
  • 4
  • 4
  • Tagged with
  • 1224
  • 277
  • 274
  • 192
  • 187
  • 176
  • 171
  • 143
  • 142
  • 122
  • 119
  • 116
  • 112
  • 110
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Time resolved light sheet microscopy

O'Brien, Daniel J. January 2019 (has links)
Understanding and identifying critical protein-protein interactions is just one of the key outcomes in biological research. It can help to confirm key cellular interactions, which in some fields, such as cancer research, can result in a greater understanding of disease pathogenesis, elucidate mechanisms of therapeutic resistance and aid in the development of new specific targets, leading to new methods of prevention and treatment. Time-correlated single photon counting fluorescence lifetime imaging microscopy is just one of the tools used to carry out this line of research. Here we demonstrate a direct interaction between two proteins involved in gene regulation and expression; p21 and FMN2. Furthermore, we also show the capability of this system to measure chromatin compaction in three dimensions. However, fluorescence lifetime imaging has some drawbacks, acquisition times on such a system can range from the tens of seconds to minutes, which is often too long to comprehensively measure many biological events. But microscopy is always developing, aided by new techniques and, perhaps even more so, new technological developments. This thesis also demonstrates two new methods of light sheet microscopy, that use both new equipment made available because of technological developments to allow time resolved imaging and traditional microscopic aspects to form a light sheet system based on polarisation. It outlines the design and how to build these systems and presents their function to show their great promise. Both techniques presented in this thesis utilise aspects of light not conventionally used in light sheet microscopy. Further development of these systems and application of emerging technologies will yield a system capable of outperforming current light sheet fluorescence microscopy-based fluorescence lifetime imaging techniques. The implementation of polarisation control into such a system would enable three-dimensional anisotropy based SPIM-FLIM measurements, an indispensable tool in researching molecular orientation and mobility at a macroscopic level in developing organisms.
142

Estudo da consolidação proporcional nas empresas que atuam no mercado brasileiro / Study of the proportionate consolidation on companies that are active in the Brazilian market

Furuta, Fernanda 09 November 2005 (has links)
Não existe consenso em relação à melhor forma de reconhecimento de investimentos em joint ventures na demonstração contábil consolidada da investidora. Há necessidade de adoção de uma única prática contábil, já que a falta de padronização do tratamento contábil de investimentos com controle compartilhado prejudica a comparabilidade das demonstrações contábeis consolidadas de empresas que adotam abordagens diferentes. Este trabalho tem como objetivo avaliar tanto os reflexos da adoção da consolidação proporcional nas demonstrações contábeis da investidora quanto da não adoção desse método quando há investimento de controle compartilhado. O Lucro Líquido e o Patrimônio Líquido são os únicos valores que devem ser iguais nessas demonstrações. A pesquisa empírica testou se há diferenças significativas entre os valores das contas ao ser feita adoção ou não da consolidação proporcional. O levantamento de dados foi realizado por meio do banco de dados da Fundação Instituto de Pesquisas Contábeis, Atuariais e Financeiras- FIPECAFI/FEA USP, que é utilizado na edição da Revista Exame ? Melhores e Maiores. Inicialmente, foram pesquisadas as empresas que atuam no mercado brasileiro e que, no período de 1996 a 2003, apresentaram investimento com controle compartilhado. Posteriormente, na pesquisa empírica foram utilizados os dados de 2000 a 2003 que totalizaram 34 demonstrações contábeis e, a partir dessas demonstrações, foi calculado como seriam os valores caso não fosse feita a consolidação proporcional. Utilizou-se o teste não paramétrico de Wilcoxon e os resultados indicaram que ao nível de significância de 5%, há diferenças significativas entre os valores do ativo circulante, do realizável a longo prazo, do passivo circulante, do exigível de longo prazo, das vendas líquidas, do custo da mercadorias vendidas ou custo do produtos vendidos ou custo dos serviços prestados, do capital circulante liquido, do capital de terceiros sobre capital próprio, da liquidez corrente, da liquidez geral e da margem líquida, obtidos aplicando-se a consolidação proporcional e não a aplicando. Esses resultados confirmam a controvérsia existente na literatura acadêmica em relação às divergências de um método em relação ao outro, em termos de controle e definição de ativo e exigibilidade. Apesar de os testes estatísticos sugerirem que não há diferença significativa na composição do endividamento não é possível generalizar que seus valores não sejam diferentes. Os resultados obtidos, neste trabalho, indicam que a adoção de uma abordagem de consolidação ou outra pode fazer com que o usuário da demonstração contábil interprete de forma diferente as demonstrações consolidadas de empresas que possuem investimentos em joint venture. / There is no consensus on the best way of recognizing investments in joint ventures in the investing company?s financial statement. One single accounting practice needs to be adopted, as the lack of a standardized accounting treatment for investments in cases of shared control impairs the comparability of consolidated financial statements issued by companies that adopt different approaches. This study aims to evaluate the reflexes of adopting ? or not - the proportional consolidation method in the investing company?s financial statements in case of shared control investments. In these statements, Net Profit and Net Equity are the only figures that have to be equal. An empirical study tested for significant differences between the figures of accounts with or without proportional consolidation. Data were collected from the database of the Institute for Accounting, Actuarial and Financial Research Foundation - FIPECAFI/FEA USP, which is used to publish the magazine Exame ? Melhores e Maiores. First, we examined companies active in the Brazilian market who presented shared control investments between 1996 and 2003. Next, in the empirical study, we used data from 2000 to 2003, totaling 34 financial statements, which were used for calculating figures with and without proportional consolidation. Wilcoxon?s non-parametrical test was used with a significance level of 5%. Results indicated significant differences in current and long-term assets, current and long-term liabilities, net sales, cost of goods sold or cost of products sold or cost of services rendered, working capital, index of capital of third-party investors on own capital, current and general liquidity and net margin, when calculated with and without the proportional consolidation method. These results confirm the controversy in academic literature about the differences between one method and another in terms of control and definition of assets and liabilities. Although statistical tests suggest that there is no significant difference in the composition of indebtedness, it cannot be generalized that there are no differences between the figures. The results of this study indicate that, due to the adoption of a specific consolidation approach, financial statement users may give a different interpretation to the consolidated statements of companies with joint venture investments.
143

Imaging Vibrio Cholerae Invasion and Developing New Tools for 3D Microscopy of Live Animals

Logan, Savannah 30 April 2019 (has links)
All animals harbor microorganisms that interact with each other and with their hosts. These microorganisms play important roles in health, disease, and defense against pathogens. The microbial communities in the intestine are particularly important in preventing colonization by pathogens; however, this defense mechanism and the means by which pathogens overcome it remain largely unknown. Moreover, while the composition of animal-associated microbial communities has been studied in great depth, the spatial and temporal dynamics of these communities has only recently begun to be explored. Here, we use a transparent model organism, larval zebrafish, to study how a human pathogen, Vibrio cholerae, invades intestinal communities. We pay particular attention to a bacterial competition mechanism, the type VI secrection system (T6SS), in this process. In vivo 3D fluorescence imaging and differential contrast imaging of transparent host tissue allow us to establish that V. cholerae can use the T6SS to modulate the intestinal mechanics of its host to displace established bacterial communities, and we demonstrate that one part of the T6SS apparatus, the actin crosslinking domain, is responsible for this function. Next, we develop an automated high-throughput light sheet fluorescence microscope to allow rapid imaging of bacterial communities and host cells in live larval zebrafish. Light sheet fluorescence microscopy (LSFM) has been limited in the past by low throughput and tedious sample preparation, and our new microscope features an integrated fluidic circuit and automated positioning and imaging to address these issues and allow faster collection of larger datasets, which will considerably expand the use of LSFM in the life sciences. This microscope could also be used for future experiments related to bacterial communities and the immune system. The overarching theme of the work in this dissertation is the use and development of advanced imaging techniques to make new biological discoveries, and the conclusions of this work point the way toward understanding pathogenic invasion, maximizing the use of LSFM in the life sciences, and gaining a better grasp of host-associated bacterial community dynamics. This dissertation includes previously published and unpublished co-authored material.
144

Mathematical models for the glass sheet redraw process

O'Kiely, Doireann January 2017 (has links)
In this thesis we derive mathematical models for the glass sheet redraw process for the production of very thin glass sheets. In the redraw process, a prefabricated glass block is fed into a furnace, where it is heated and stretched by the application of draw rollers to reduce its thickness. Redrawn sheets may be used in various applications including smartphone and battery technology. Our aims are to investigate the factors determining the final thickness profile of a glass sheet produced by this process, as well as the growth of out-of-plane deformations in the sheet during redraw. Our method is to model the glass sheet using Navier–Stokes equations and free-surface conditions, and exploit small aspect ratios in the sheet to simplify and solve these equations using asymptotic expansions. We first consider a simple two-dimensional sheet to determine which physical effects should be taken into account in modelling the redraw process. Next, we derive a mathematical model for redraw of a thin threedimensional sheet. We consider the limits in which the heater zone is either short or long compared with the sheet half-width. The resulting reduced models predict the thickness profile of the redrawn sheet and the initial shape required to redraw a product of uniform thickness. We then derive mathematical models for buckling of thin viscous sheets during redraw. For buckling of a two-dimensional glass sheet due to gravity-induced compression, we predict the evolution of the centreline and investigate the early- and late-time behaviour of the system. For a three-dimensional glass sheet undergoing redraw, we use numerical solutions to investigate the behaviour of the sheet mid-surface.
145

Nature and dynamics of ice-stream beds : assessing their role in ice-sheet stability

Davies, Damon January 2018 (has links)
Ice streams are fast flowing outlet glaciers through which over 90% of the ice stored within the Antarctic Ice Sheet drains. The dynamic behaviour of ice streams is therefore crucial in controlling the mass balance of the ice sheet. Over the past few decades, Antarctica has been losing mass. Much of this mass loss has been focussed around coastal regions of the Antarctic Ice Sheet. Some of the most dramatic changes such as grounding-line retreat, acceleration and surface elevation change have been observed in Pine Island Glacier (PIG) and its neighbouring ice streams. This is of particular concern because these ice streams account for 10% of the discharge from the west Antarctic Ice Sheet and therefore have the potential to contribute significantly to global sea-level rise. One of the key challenges in accurately forecasting this future sea-level rise is improving understanding of processes occurring at the beds of ice streams. This requires detailed knowledge of the properties and dynamics of the bed. This thesis aims to address this knowledge gap by investigating the spatial and temporal characteristics of the bed of PIG using high-resolution geophysical data acquired in its trunk and tributaries and beneath the ice shelf. The thesis begins by analysing radar-derived high-resolution maps of subglacial topography. These data show a contrasting topography across the ice-bed interface. These diverse subglacial landscapes have an impact on ice flow through form drag, controlled by the size and orientation of bedrock undulations and protuberances. The next chapter provides a quantitative analysis of these landscapes using Fast Fourier analysis of subglacial roughness. This analysis investigates the roughness signature of subglacial bedforms and the how the orientation and wavelength of roughness elements determine their correlation with ice dynamic parameters. The slow-flowing inter-tributary site is found to have a distinct signature comparable to 'ribbed' patterns of modelled basal shear stress and transverse 'mega rib' bedforms. Roughness oriented parallel to ice flow with wavelengths approaching mean ice thickness are found to have the highest correlation with ice dynamic parameters. The temporal stability of PIG is analysed using repeat radar measurements. No significant change is observed over a period of 3-6 years with no evidence of rapid erosion or the evolution of subglacial bedforms as observed in previous repeat measurements of ice-stream beds elsewhere in Antarctica. This suggests that the widespread deforming till layer detected in extensive seismic reflection surveys is in steady state. Lastly, the thesis explores geomorphological evidence of twentieth-century grounding-line retreat beneath PIG Ice Shelf using high-resolution geophysical data acquired from autonomous underwater vehicle surveys. Evidence of erosion, deposition, meltwater flow and post-glacial modification is observed in fine detail. The observed distribution of sediment supported previous surveys indicating a geological transition coinciding with the ridge that acted as a former stable grounding-line location. Metre-scale resolution images of recently deglaciated ice stream beds were found to reveal bedforms that are not detectable with traditional offshore bathymetric surveys. Together these findings reveal the role of short wavelength topography as both an influence on, and product of fast ice stream flow. It also highlights the spatial diversity of subglacial environments and the need to focus future research on tying detailed observations of ice-stream beds with knowledge of basal properties over time.
146

America Sings: An Oratorio for Mixed Choir, Brass, Percussion, Narrator

Cates, William, Jr. 01 May 1976 (has links)
I wrote this work with the nation's Bicentennial Celebration in mind. I was completed on Dec. 1, 1975. I hope the musicians who perform it will do so with the same attitude of pride in being an American that I feel and that I experienced as I wrote it. The underlying motive, in the beginning, was to write a "Bicentennial piece" that would be totally different from other works that would be most surely coming out in the '75-'76 Bicentennial year. I chose the vocal medium first because the ability to sing is God's gift to man. It is 'natural' music. I chose the brass accompaniment because of the power of the instruments themselves, hinting at the power of the nation. I chose percussion to add flare, variety, and vitality, the very pulse and drive of the nation. To my knowledge, the Mayflower Compact, the Declaration of Independence, the Preamble to the Constitution, and the Pledge to the Flag had never before been set to music as I did in America Sings. These are relatively obscure documents in the music world and yet so vital to America's history. I combined the two: 4 significant documents in the history of the nation, and musical treatise. Finally, the original status of these documents was that they were to be read or recited; so the Narrator provides the continuing story of why America Sings. There are two basic musical ideas that seem to recur throughout the piece. One is the use if V-I-V scale degree pattern in both vocal and brass parts. This recurring pattern gives the feeling of "looking upward." The other is a recurring I-V melody bass pattern in the tuba and timpani parts, implying an old American march. The piece is in oratorio form.
147

Evaluation of adhesively bonded steel sheets using ultrasonic techniques

Tavrou, Chrysostomos Kyriacou, stavrou@swin.edu.au January 2005 (has links)
Adhesives have presently reached a stage where they have become part of everyday life both in a professional sense as well as for household applications. They offer advantages that in many respects surpass other joining processes such as bonding of large areas, joining a wide range and dissimilar materials; and without the need for special tooling or operator training, that is often required by many other joining processes. They are of course not a panacea to all fastening applications, but they can easily be described as the most versatile and most widely used joining method at present. Engineering applications have also benefited from the advantages offered by adhesives, but they are not as liberally used due to the severe consequences that may result from bond failure. Although adhesives can demonstrate their ability to fulfil the joining strength requirements under laboratory conditions, their application in industry proved to be not as reliable as expected. A number of parameters that can easily be controlled under laboratory conditions such as temperature, humidity, surface preparation and uniform adhesive application are not as easily observed in industry. Quality assurance during manufacturing can achieve excellent results; however even in these cases the probability of having adhesive bond defects is still present. Therefore, there is a need for post process inspection of adhesive bonds where risk levels require higher reliability than what is offered though process quality control. Adhesive bond inspection is a well researched area with respectable outcomes. Non destructive inspection techniques such as x-ray, thermal, and ultrasonic are well utilised in the inspection of adhesive bonds. However, despite all the effort in this area for more than forty years, there is still no singular technique that can achieve the confidence level required in some engineering applications. Therefore, the need for continuing research in the area of non-destructive evaluation of adhesive bonds is as necessary today as it�s ever been. The research presented in this thesis, continues in the same endeavour as many other researchers; that of achieving the ultimate technique in adhesive bond inspection, capable of reaching the confidence level required for all engineering applications. The research in the thesis commenced with coverage of adhesives used for engineering applications and a study of the adhesion science that was considered necessary to enable an informed approach to the problem. Adhesive bond failure is also analysed through a literature survey as well as experimental tests on standard specimens. At the completion of the literature survey and preliminary tests, a decision was taken to follow the ultrasonic path of non-destructive testing of adhesive bonds. The reasons for this, are clearly outlined in the main body of this thesis but in summary, the literature has shown that ultrasonic evaluation is the most widely used technique by industry. Therefore, improvements on data analysis using existing techniques that exploit ultrasonic inspection have the potential to reach the widest spectrum of industrial applications. Ultrasonic inspection equipment was sourced that was capable of achieving experimental results to the accuracy level required in this research. A precision test rig was designed and constructed that was subsequently calibrated using computer based statistical techniques to ensure the validity of all results. Other ancillary equipment, such as a portable tensile testing device were also designed and constructed during the research as it became necessary. Research concentrated on techniques found to be inadequately researched in this domain. The first technique evaluated was to measure bond quality through the stress distribution in adherent and adhesive. Computer based Finite Element Analysis showed that the ability to detect variation in stress distribution at the adhesion interface is capable of revealing the local bond strength. Having found that there is no technique available at present that can measure the stress distribution at the interface, a different direction was taken that showed potential in achieving excellent quantitative results in the analysis of ultrasonic signals from adhesive bonds. This technique was rigorously evaluated and the results are systematically reported in this work.
148

Elastic behaviour in mechanical draw presses.

Dingle, Matthew, mikewood@deakin.edu.au January 2001 (has links)
This thesis explores the elastic behaviour of the mechanical double action press and draw die system commonly used to draw sheet metal components in the automotive industry. High process variability in production and excessive time spent in die try-out are significant problems in automotive stamping. It has previously been suggested that the elastic behaviour of the system may contribute to these problems. However, the mechanical principles that cause the press system to affect the forming process have not been documented in detail. Due to a poor understanding of these problems in industry, the elasticity of the press and tools is currently not considered during the die design. The aim of this work was to explore the physical principles of press system elasticity and determine the extent to which it contributes to problems in try-out and production. On the basis of this analysis methods were developed for controlling or accounting for problems during the design process. The application of frictional restraining force to the edges of the blank during forming depends on the distribution and magnitude of the clamping force between the binders surfaces of the draw die. This is an important control parameter for the deep drawing process. It has been demonstrated in this work that the elasticity of the press and draw die can affect clamping force in two ways. The response of the press system, to the forces produced in the press during forming, causes the magnitude of clamping force to change during the stroke. This was demonstrated using measured data from a production press. A simple linear elastic model of the press system was developed to illustrate a definite link between the measured force variation and the elasticity of the press and tools. The simple model was extended into a finite element model of the complete press system, which was used to control a forming simulation. It was demonstrated that stiffness variation within the system could influence the final strains in a drawn part. At the conclusion of this investigation a method is proposed for assessing the sensitivity of a part to clamping force variation in the press during die design. A means of reducing variation in the press through the addition of a simple linear spring element is also discussed. The second part of the work assessed the influence of tool structure on the distribution of frictional restraining forces to the blank. A forming simulation showed that tool stiffness affects the distribution of clamping pressure between the binders. This was also shown to affect the final strains in a drawn part. However, the most significant influence on restraining force was the tendency of the blank to increase in thickness between the binders during forming. Using a finite element approximation of the try-out process it was shown that the structure of the tool would also contribute to the problems currently experienced in try-out where uneven contact pressure distributions are addressed by manually adjusting the tool surfaces. Finally a generalised approach to designing draw die structures was developed. Simple analysis methods were combined with finite element based topology optimisation techniques to develop a set of basic design guidelines. The aim of the guidelines was to produce a structure with uniform stiffness response to a pressure applied at the binder surface. The work concludes with a recommendation for introducing the methods developed in this thesis into the standard production process.
149

Wear in sheet metal forming

Gåård, Anders January 2008 (has links)
<p>The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures.</p><p>Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.</p>
150

Gaussian Distribution Approximation for Localized Effects of Input Parameters

Rzepniewski, Adam K., Hardt, David E. 01 1900 (has links)
In the application of cycle-to-cycle control to manufacturing processes, the model of the process reduces to a gain matrix and a pure delay. For a general multiple input – multiple output process, this matrix shows the degree of influence each input has on each output. For a system of high order, determining this gain matrix requires excessive numbers of experiments to be performed, and thus a simplified, but non-ideal form for the gain matrix must be developed. In this paper, the model takes the form of a Gaussian distribution with experimentally determined standard deviation and scaling coefficients. Discrete die sheet metal forming, a multiple input-multiple output process with high dimensionality, is chosen as a test application. Results of the prediction capabilities of the Gaussian model, as well as those of two previously existing models, are presented. It is shown that the Gaussian distribution model does the best job of predicting the output for a given input. The model’s invariance over a set of different formed parts is also presented. However, as shown in the companion paper on cycle-to-cycle control, the errors inherent in this model will cause non-ideal performance of the resulting control system. However, this model appears to be the best form for this problem, given the limit of minimal experimentation. / Singapore-MIT Alliance (SMA)

Page generated in 0.0403 seconds