• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1216
  • 384
  • 158
  • 148
  • 66
  • 34
  • 34
  • 29
  • 29
  • 29
  • 29
  • 29
  • 29
  • 20
  • 20
  • Tagged with
  • 2676
  • 680
  • 395
  • 341
  • 313
  • 244
  • 241
  • 195
  • 180
  • 176
  • 152
  • 151
  • 133
  • 123
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Celastrol, a proteasome inhibitor, can induce the expression of heat shock protein genes in Xenopus cultured cells

Walcott, Shantel 01 1900 (has links)
Heat shock proteins (HSPs) are stress-inducible and evolutionarily conserved molecular chaperones that are involved in protein binding and translocation. As molecular chaperones, HSPs bind to denatured proteins, inhibit their aggregation, maintain their solubility, and assist in refolding. This process inhibits the formation of protein aggregates which can be lethal to the cell. In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the degradation of most non-native proteins. Furthermore, proteasome inhibition has been shown to induce hsp gene expression. Celastrol, a quinone methide triterpene, was shown to have an inhibitory effect on proteasome function in mammalian cells. The present study determined that celastrol induced the accumulation of ubiquitinated proteins and reduced proteasomal chymotrypsin-like activity in Xenopus laevis A6 kidney epithelial cells. In addition, incubation of A6 cells with celastrol induced the accumulation of HSP30 and HSP70 in a dose- and time-dependent manner with maximal levels of HSP accumulation occurring after 18 h of exposure. In A6 cells recovering from celastrol, the relative levels of HSP30 and HSP70 accumulation remained elevated for 18-24 h after removal of celastrol. The activation of heat shock factor 1 (HSF1) DNA-binding may be involved in celastrol-induced hsp gene expression in A6 cells, since the HSF1 inhibitor, KNK437, repressed the accumulation of HSP30 and HSP70. Exposure of A6 cells to simultaneous celastrol and mild heat shock treatment enhanced the accumulation of HSP30 and HSP70 to a greater extent than the sum of both stressors individually. Additionally, concurrent treatment of A6 cells with low concentrations of both celastrol and MG132 produced different patterns of HSP30 and HSP70 accumulation. While combined treatment with celastrol and MG132 acted synergistically on HSP30 accumulation, relative levels of HSP70 were similar to those observed with MG132 alone. Immunocytochemical analysis of celastrol- or MG132-treated A6 cells revealed HSP30 accumulation in a punctate pattern primarily in the cytoplasm with some staining in the nucleus. Also, in some cells treated with celastrol or MG132 large HSP30 staining structures were observed in the cytoplasm. Lastly, exposure of A6 cells to celastrol induced rounder cell morphology, reduced adherence and disorganization of the actin cytoskeleton. In conclusion, this study has shown that celastrol inhibited proteasome activity in amphibian cultured cells and induced HSF1-mediated expression of hsp genes.
342

Inhibitory Effect of Warm Water Immersion-induced Hyperthermia on Neurogenic Inflammation in Rat Airways and the Possible Mechanisms

Fu, Yaw-syan 09 June 2010 (has links)
In mammals, the neurogenic inflammatory response can be induced by stimulation or activation on the peripheral sensory C-fibers to release neuropeptides from the peripheral terminals, at the same time their afferent functions are enhanced. There are several neuropeptides stored and released from peripheral terminals of the afferent fibers, such as substance P (SP), neurokinin A, and calcitonin gene related peptide (CGRP). SP is one of the major inflammatory mediators of neurogenic inflammation that can act on neurokinin-1 receptors on smooth muscles and endothelial cells of blood vessels, causing vasodilatation, endothelial gap formation, and local plasma leakage. There are many studies and reports indicate that animals pretreated with a short period non-lethal hyperthermia can induce heat shock response and activate the expression of a group of inducible proteins called heat shock proteins (HSPs), and this stress response reduces the injury by same or other following stresses. In this study, the hyperthermia treatment (HT) was implemented by 42¢J hot water bath and the core body temperature of anesthetized rat was elevated and maintained around 42.0¡Ó0.5¢J for 15 min, and the normothermia control treatment (NT) was implemented by 37¢J warm water bath with the same period. 24 hours after NT or HT, the neurogenic plasma leakage was induced by intravascular injection with capsaicin (90 £gg/kg), SP (3 £gg/kg), or electrical stimulation on the right thoracic vagus nerve. The blood pressures of each animal were continually recorded during the neurogenic inflammation induction or sham operation. The amount of neurogenic inflammation of airway was evaluated by the area density leaky blood vessels. The leaking vessels were labeled with India ink and quantitative analysis by morphometric method. Plasma leakage was also measured by interstitial Evans blue concentration. The results indicated that HT could reduce plasma leakage and hypotension of the neurogenic inflammation that induced by capsaicin, SP or electrical stimulation on vagus nerve. Animals pretreated with aminoguanidine (a selective inhibitor of iNOS) had no significant effect on the neurogenic inflammation by following systemic SP infusion, but that could eliminate the anti-neurogenic inflammatory effect of HT. Animal applied with diphenhydramine (an antagonist of histamine H1 receptor) could attenuate the neurogenic inflammation by following systemic SP infusion, and HT could attenuate the neurogenic inflammation that with or without H1 receptor antagonist. This result indicates that NO synthesis and the activity of iNOS have few effects on neurogenic inflammation of airway, but it plays a critical factor on the initiation of heat shock response. The neurogenic inflammation induced by SP not only direct act on blood vessels but have other indirect effect by the histamine H1 receptor to enhance inflammation. Neonatal rats received high dose capsaicin treatment would induce irreversible sensory C-fiber denervation. The adult rats that were neonatally treated with capsaicin showed a more serious inflammatory response to systemic SP infusion as compared with animals neonatally treated with vehicle. HT still had the anti-inflammatory effects on the neurogenic inflammation that induced by SP. The results indicated that animals with sensory C-fiber denervation might conserve their neurogenic inflammatory responses and were hypersensitive to SP. In conclusion, the HT could attenuate the neurogenic inflammation that induced by different drugs or methods, and the anti-inflammatory effects were correlated with the increase in HSP72 expression. In the neurogenic inflammation induced by SP, the activation of histamine H1 receptors may enhance inflammation, but the activity of endogenous iNOS was less effective.
343

Burkholderia pseudomallei heat shock protein (groEL) DNA vaccination provides Th1 immune response with cross-protection to Burkholderia cenocepacia for BALB/c mice

Yang, Ya-Ting 10 September 2012 (has links)
The immunogenicity and protective efficacy of a DNA vaccine encoding a truncated groEL heat shock gene (pcDNA3/groEL) from Burkholderia pseudomallei was evaluated in vaccinated BALB/c mice infected with B. pseudomallei or B. cenocepacia. After vaccination, the levels of anti-GroEL total IgG and IgG2a were increased in mouse sera. The clonal expansion of the spleen cells increased, and the GroEL protein induced IFN-£^ production by spleen cells. The anti-GroEL antibody-mediated opsonic killing effect was not able to eliminate the growth of B. pseudomallei but was able to eliminate the growth of B. cenocepacia. After intravenous challenge of the vaccinated Balb/c mice with B. pseudomallei, the number of bacteria colonizing the in liver and/or spleen was not reduced. Over 50% of vaccinated mice infected with B. pseudomallei died within 7 days post-infection. By contrast, the bacterial loads in organs were significantly reduced if the vaccinated mice were infected with B. cenocepacia. All of vaccinated mice were alive 7 days post-infection. Liver damage, as assessed by histological observation, and abnormalities in the levels of liver enzymes rapidly resolved in vaccinated mice. We suggest that B. pseudomallei groEL plasmid DNA immunization of Balb/c mice induces a Th1-type immune response and provides cross-protection against B. cenocepacia but not against B. pseudomallei infection.
344

Study and characterization of a novel small heat shock protein from Babesia

Carson, Kenneth Harris 02 June 2009 (has links)
Many proteins can easily attain a non-native fold and be of no use or even a detriment to the host. The host cell has a myriad of molecules dedicated to assisting nascent and existing proteins in folding properly and maintaining the native fold. Of these molecular chaperones, the small Heat Shock Proteins (sHSP’s) are an important group and worthy of study. The sHSP’s are a diverse group of proteins that have in common an a-crystallin domain and generally display a chaperone activity. A sHSP (HSP20) isolated from the cattle parasite Babesia bovis has similar activities, and limited sequence homology to other a-crystallins. The gene encoding HSP20 was cloned into an expression system where the gene product was induced and purified for study. It was shown that HSP20 inhibits thermally induced aggregation of alcohol dehydrogenase at equimolar ratios. HSP20 was also used to significantly reduce amyloid formation of the b-Amyloid (1-40) Peptide in vitro at the sub-stoichiometric ratio of 1:10. A study of the oligomeric forms of HSP20 using size exclusion chromatography and gel electrophoresis revealed a broad range of multimers present in solution. The distribution of oligomers was affected by altering the solution conditions and concentration of the protein. The domains responsible for multimerization of HSP20 were mapped via sequence homology with known a-crystallins. These regions correspond to 12 carboxy-terminal amino acids and 50 amino-terminal amino acids. Truncated versions of HSP20 lacking these proposed oligomerization domains were created using PCR of the original gene and cloning into an expression vector as before. Using size exclusion chromatography, gel electrophoresis and analytical centrifugation, we show that the deleted domains alter the multimeric population of the protein in solution. The carboxy-terminal domain has a slight effect on multimerization while the amino-terminal deletion results in a drastic reduction in any multimers above a dimer under the conditions tested. Despite this drastic change in the multimerization of HSP20, there were no changes in the activities observed when compared to the full-length form. From this we conclude that the regions responsible for multimerization play little role in the observed activities of HSP20.
345

OH* Chemiluminescence: Pressure Dependence of O + H + M = OH* + M

Donato, Nicole 2009 December 1900 (has links)
The measure of chemiluminescence from the transition of the hydroxyl radical from its electronically excited state (A^2 Sigma^positive) to its ground state (X^2 Pi) is used in many combustion applications for diagnostic purposes due to the non-intrusive nature of the chemiluminescence measurement. The presence of the ultraviolet emission at 307nm is often used as an indicator of the flame zone in practical combustion systems, and its intensity may be correlated to the temperature distribution or other parameters of interest. To date, the measurement of the excited state OH, OH*, is mostly qualitative. With the use of an accurate chemical kinetics model, however, it is possible to obtain quantitative measurements. Shock-tube experiments have been performed in highly diluted mixtures of H2/O2/Ar at a wide range of pressures to evaluate the pressure-dependent rate coefficient of the title reaction. In such mixtures the main contributing reaction to the formation of OH* is, O H M = OH* M. R1 Previous work has determined the reaction rate of R1 at atmospheric conditions and accurately predicts the amount of OH* experimentally produced. At elevated pressures up to 15 atm, which are of interest to the gas turbine community, the currently used reaction rate of R1 (i.e., without any pressure dependence) significantly over predicts the amount of OH* formed. This work provides the pressure dependence of R1. The new reaction rate is able to reproduce the experimental data over the range of conditions studied and enables quantitative measurements applicable to practical combustion environments.
346

Chemiluminescence and Ignition Delay Time Measurements of C9H20 Oxidation in O2-Ar Behind Reflected Shock Waves

Rotavera, Brandon 2009 December 1900 (has links)
Stemming from a continuing demand for fuel surrogates, composed of only a few species, combustion of high-molecular-weight hydrocarbons (>C5) is of scientific interest due to their abundance in petroleum-based fuels, which contain hundreds of different hydrocarbon species, used for military, aviation, and transportation applications. Fuel surrogate development involves the use of a few hydrocarbon species to replicate the physical, chemical, combustion, and ignition properties of multi-component petroleum-based fuels, enabling fundamental studies to be performed in a more controlled manner. Of particular interest are straight-chained, saturated hydrocarbons (n-alkanes) due to the high concentration of these species in diesel and jet fuels. Prior to integrating a particular hydrocarbon into a surrogate fuel formulation, its individual properties are to be precisely known. n-Nonane (n-C9H20) is found in diesel and aviation fuels, and its combustion properties have received only minimal consideration. The present work involves first measurements of n-C9H20 oxidation in oxygen (O2) and argon (Ar), which were performed under dilute conditions at three levels of equivalence ratio (phi = 0.5, 1.0, and 2.0) and fixed pressure near 1.5 atm using a shock tube. Utilizing shock waves, high-temperature, fixed-pressure conditions are created within which the fuel reacts, where temperature and pressure are calculated using 1D shock theory and measurement of shock velocity. Of interest were measurements of ignition times and species time-histories of the hydroxyl (OH*) radical intermediate. A salient pre-ignition feature was observed in fuel-lean, stoichiometric, and fuel-rich OH* species profiles. The feature at each equivalence ratio was observed above 1400 K with the time-of-initiation (post reflected-shock) showing dependence on phi as the initiation time shortened with increasing phi. Relative percentage calculations reveal that the fuel-rich condition produces the largest quantity of pre-ignition OH*. Ignition delay time measurements and corresponding activation energy calculations show that the phi = 1.0 mixture was the most reactive, while the phi = 0.5 condition was least reactive.
347

Inhibitory Effect of Heat Shock on Neurogenic Plasma Leakage in Rat Airways and Esophagus Induced by Capsaicin and Substance P

Wang, Peng-Han 26 August 2003 (has links)
¡iAbstract¡j Neurogenic inflammation can be initiated by activation of sensory nerves to release neuropeptides, including tachykinins and calcitonin gene-related peptide. Capsaicin stimulation induces the release of substance P, the most important tachykinin and other neurotransmitters from sensory nerves to cause an increase of plasma leakage via the binding of substance P to NK1 receptors on endothelial cells. It has been proven that hyperthermic pretreatment decreases microvascular protein leakage and attenuates hypotension in anaphylactic shock in rats. Heat shock proteins¡]HSPs¡^are families of phylogenetically conserved molecules that have a protective role in all living cells under stress . Heat shock proteins are induced by whole-body hyperthermia and persist for 6 days. To establish the relationship between heat shock and neurogenic inflammation, the present study investigated whether whole-body hyperthermia pretreatment, at 42 ¢J for 15 min in rats 1 day earlier, could suppress inflammatory response in the lower airways and esophagus evoked by capsaicin (90 µg/ml/kg) or substance P (3 µg/ml/kg ). The magnitude of neurogenic inflammation in the trachea and bronchi was expressed by the area density of India ink-labeled leaky blood vessels in the airway mucosa. One day after heat shock pretreatment, capsaicin-evoked inflammation was reduced by one half to two thirds, and reduced substance P-evoked inflammation by one third. Six days after exposure to heat shock, neurogenic inflammation was not inhibited. HSPs appeared overexpressed in trachea and esophagus tissue in the rats one day after hyperthermia, but was less expressed 6 days after hyperthermia. It is suggested that exposure of the rats to whole-body hyperthermia caused an increased production of HSPs that might influence the affinity of the binding of substance P to NK1 receptors on venule endothelial cells, and reduce the amount of neurogenic plasma leakage.
348

Role of YDL100C in heat-shock-induced cell death of Saccharomyces cerevisiae

Chu, Jia-Hong 05 September 2004 (has links)
YDL100Cp is the ArsA homologue protein found in S. cerevisiae. In bacteria, ArsA protein is involved in As3+detoxification but the function of YDL100Cp is still unknown. Previous studies show that deletion of YDL100C in S. cerevisiae was not lethal and had no effect on As3+ sensitivity or growth at 30¢J. However, when grown at 40¢J, growth of YDL100C disrupted strain (JSY1) was inhibited. To study the role of YDL100C in response to lethal heat shock, wild type (W303-1B) and JSY1 cells were exposed to 50¢J for 15 min. The survival rate of JSY1 cells was half of W303-1B cells and the difference in survival rate was complemented by introduction of plasmid carrying YDL100C. It suggests that YDL100Cp plays a role in acquisition of thermotolerance to lethal heat shock. It is believed that there are two factors involved in heat-induced cell death: the heat damage and the oxidative damage. Determinations of heat-damage related defense system in S. cerevisiae, including trehalose (a thermoprotectant) content, Hsp70 expression and Hsp104 expression, demonstrate that heat damage should not be the major cause of JSY1 cell death during heat shock. For the oxidative damage, the measurement of in vivo reactive oxygen species reveal the lower protein damage caused by reactive oxygen species (ROS) in JSY-1 after 50¢J 15 min heat shock, this might reflect the difference in viability of three strains under lethal heat shock. And with the intra cellular content of glutathione, it revels that the YDL100C deficient caused cell got more serious oxidative damage under 50¢J heat shock. But the observation of thermotolerance related ROS scavenger system (including the catalase, and superoxide dismutase) expression with reverse transcription polymerase chain reaction suggested that YDL100C deficient had no effect on triggering these system. As the result, it is suggested that the function of YDL100Cp in S. cerevisiae might be an oxidative damage repair system, such as the glutathione peroxidase. It might react with the oxidative damage substance and function as a deoxidizer.
349

Induction of apoptosis in malignant brain tumor cell by heat shock and all trans retinoic acid

WANG, Shin-yuan 01 November 2005 (has links)
Cancer has become the first among the 10 major death causing factors in Taiwan. Glioblastoma multiforme (GBM) is the most common malignant tumor in adult human brain tumors. Previously, heat shock or all trans retinoic acid (ATRA) treatment has been shown to be effective in inducing cell apoptosis and cell cycle arrest in several cancer cell lines. In this study, human brain tumor cell line GBM8401 was exposed to 43¢J for 30 min followed by incubation with ATRA. The treatment resulted in up to 50% inhibition of cell growth rate and 50% reduction of cell survival rate . Analysis of cell apoptosis related gene expression and protein expression with RT-PCR and Western blot has showen that p21, p27, pro-caspase 3, phospho-JNK and phospho-p38 were overexpressed after treatment of tumor cells with 43¢J for 30 min followed by addition of ATRA for 15 min to 8 hr. The immunocytochemistry assay revealed that overexpression of phospho-p53 in the nuclei after tumor cells were treated with 43¢J for 30 min followed by addition of ATRA for 8 hr. Results from this study show that treating tumor cells with heat shock before incubation with ATRA will enhance cell apoptosis and inhibit cell growth.
350

GERANYLGERANYLACETONE ATTENUATES CISPLATIN-INDUCED REDUCTIONS IN CELL VIABILITY BY SUPPRESSING THE ELEVATION OF INTRACELLULAR P53 CONTENT WITHOUT HEAT SHOCK PROTEIN INDUCTION

GOTO, HIDEMI, ANDO, TAKAFUMI, ISHIGURO, KAZUHIRO, HASEGAWA, MOTOFUSA 02 1900 (has links)
No description available.

Page generated in 0.0688 seconds