• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 24
  • 15
  • 15
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 162
  • 162
  • 44
  • 43
  • 39
  • 37
  • 31
  • 28
  • 27
  • 23
  • 17
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Boundary Layer Separation in Hypersonic Ducted Flows

Andrew Dann Unknown Date (has links)
Experiments to generate multiple shock waves in an axisymmetric model at hypersonic speeds were conducted in a small reflected shock tunnel. Conical surfaces were used to generate shock waves inside a circular duct chosen to be representative of a scramjet combustor. These shock waves impinged on turbulent boundary layers to produce shock wave/boundary layer interactions (SWBLIs). In the process of observing this phenomenon, the commonly used empirical correlations of Korkegi were tested for accuracy, i.e. the combined pressure ratio across these shocks can be measured and compared to that predicted by these correlations. Korkegi correlates only with Mach number, and is independent of Reynolds number and on how the pressure is applied. A major contribution of this work is to examine how the details of the compression process effect separation. In this study, the history of applying the compression was varied. An analytical method was developed for theoretically estimating the onset of incipient separation using an integrated computation of the momentum flux contained in the boundary layer. By including the summed (negative) contribution of wall shear stress on the integrated momentum flux, the upstream history of the boundary layer was considered. The overall result has a form similar to the Korkegi correlations, plus an additional correction term relating to momentum loss through wall shear stress. The correction term was determined to be a second order effect, which explains why the Reynolds number independent Korkegi correlations work so well over such a large range of conditions. A hypersonic flow test condition conducive to the generation of high Reynolds number flows and turbulent boundary layer production was developed in a small reflected shock tunnel. The experimentally measured flow parameters were matched by numerical simulation using a number of in-house codes at The University of Queensland. This has allowed the unmeasured parameters which are numerically derived to be stated with greater confidence. An internal centre-body with a conical forebody was used to generate conditions of incipient separation. This provided benchmark data for comparison with subsequent experiments with multiple compressions. A semi-vertex angle of 15o was selected based on Large Eddy Simulation (LES) numerical results once the experimental and numerical static wall pressure and heat flux were matched. A two-cone experimental model, which provided for adjustment of the axial separation between the two shock systems, was tested at the same flow conditions as used in the single-cone experiments. A technique of incrementally moving the instrumentation (relative to the centre-body) and repeating the same condition to achieve high resolution in pressure and heat flux distributions with a limited number of transducers was successful. The results verified that it was possible to subject a hypersonic turbulent boundary layer to two quantified compression-expansion systems with an adjustable axial separation between them and capture the first reflected shock in a “shock trap” to remove it's influence from the second SWBLI. The data from this initial two-cone model provided non-separated pressure and heat flux data which was used as a reference to help interpret data from separated flows. The commercially available Reynolds Averaged Navier-Stokes (RANS) numerical code, CFD-Fastran, was used to help design an experimental model which produces boundary layer separation. Algebraic and two-equation turbulence models were applied to a modified two-cone model to show greater pressure rises which would produce boundary layer separation. A modified two-cone model was tested and demonstrated boundary layer separation. Three configurations with varying axial separation between SWBLIs were tested which all produced separation. The configuration that produced the largest pressure ratio and largest separation region at the second SWBLI may represent a geometry whereby the distance from the hollow cylinder inlet and the second cone may represent a critical value. The amount of viscous interaction, generated from the leading edge of the shock trap, and the proximity of the two interactions may be coupled to produce higher than expected values. It is postulated that the boundary layer momentum recovery for the configuration where the second SWBLI was furthest downstream (30 mm configuration), prevented severe separation from occurring. An in-house RANS code, elmer3, was used to simulate the flow of the modified two-cone model. An algebraic turbulence model was applied to this model and comparisons of experimentally measured static wall pressure and heat flux have given good agreement. The wall shear stress was investigated to provide further information concerning the position and size of flow reversal regions. The use of the numerical codes utilised in this study has reinforced their effectiveness for model design and comparison of experimental results.
12

Formation and construction of a shock wave for 3-D compressible Euler equations with spherical initial data

Yin, Huicheng January 2002 (has links)
In this paper, the problem on formation and construction of a shock wave for three dimensional compressible Euler equations with the small perturbed spherical initial data is studied. If the given smooth initial data satisfies certain nondegenerate condition, then from the results in [20], we know that there exists a unique blowup point at the blowup time such that the first order derivates of smooth solution blow up meanwhile the solution itself is still continuous at the blowup point. From the blowup point, we construct a weak entropy solution which is not uniformly Lipschitz continuous on two sides of shock curve, moreover the strength of the constructed shock is zero at the blowup point and then gradually increases. Additionally, some detailed and precise estimates on the solution are obtained in the neighbourhood of the blowup point.
13

Studies on Customer Relations Management and Medical service satisfication under BOT Structure

Lee, Chi-liang 22 July 2009 (has links)
With the high development of society and economy, the rising level of national education, and the awareness of consumer rights in Taiwan, consumers¡¦ demands for medical and health care is increasing. The role of consumers has transformed to actively select and require medical and health care. The implementation of the National Health Insurance leads to the role change of the medical provider from a price maker to a price receiver, which benefits hospitals with mass product and cost control. Therefore, price-drive medical consumers become quality¡Vdriven ones, which benefits hospitals with good faculty, facilities and service. Nowadays, the hospital business environment is becoming more and more competitive. It is vital not only for hospital substantial business to create customer value of service and quality but also for hospital competitiveness to satisfy customer needs. The business strategy of hospitals is to greatly strengthen internal management and actively seek for the interaction with the external environment to keep survival and growth. Besides, hospitals apply CRM in order to attract new customers, retain old customers and to increase the profits of the customer contribution. Because of the limit of cost and budget tight policy, large hospitals are increasing their scale and the limited resource /number of customers. In this case, it is necessary for hospital¡¦s business strategy to focus on both quality and cost effectiveness. Hospitals build the tight relationship with customers so that they are willing to be diagnosed. Thus, Customer Relationship Management is the core competitive advantage for hospitals. Nevertheless, hospitals are less willing to purchase extracorporeal shock wave lithotripsy machines for the sake of the tight finance budget. As far as medical device suppliers are concerned, they have to adopt BOT approach in order to maintain business growth. Regarding the medical service and cooperation model for renal calculus patients, we discover that it is the equipment suppliers that are responsible for CRM rather than hospitals establishment. The retention number and returning frequency is the key to the revenues of the equipment suppliers, which means the relationship between hospitals and suppliers are unbroken. Our research indicates that the business model of extracorporeal shock wave lithotripsy machine can apply the concept of CRM. The medical equipment business and medical organization develop the model of the patient service with the base; CRM, the core value: customers and the hospital vision. We construct the ¡§four wins¡¨ model for the hospital, the patient, the Health Insurance Bureau and the business with the decision-making strategy, customer service and IT application.
14

Initial-Value Problem for Small Perturbations in an Idealized Detonation in a Circular Pipe

Shalaev, Ivan January 2008 (has links)
The thesis is devoted to the investigation of the initial-value problem for linearized Euler equations utilizing an idealized one-reaction detonation model in the case of three-dimensional perturbations in a circular pipe.The problem is solved using the Laplace transform in time, Fourier series in the azimuthal angle, and expansion into Bessel's functions of the radial variable.For each radial and azimuthal mode, the inverse Laplace transform can be presented as an expansion of the solution into the normal modes of discrete and continuous spectra. The dispersion relation for the discrete spectrum requires solving the homogeneous ordinary differential equations for the adjoint system and evaluation of an integral through the reaction zone.The solution of the initial-value problem gives a convenient tool for analysis of the flow receptivity to various types of perturbations in the reaction zone and in the quiescent gas.
15

The effect of joint compliance within rigid whole-body computer simulations of impacts

McErlain-Naylor, Stuart A. January 2017 (has links)
In high impact human activities, much of the impact shock wave is dissipated through internal body structures, preventing excessive accelerations from reaching vital organs. Mechanisms responsible for this attenuation, including lower limb joint compression and spinal compression have been neglected in existing whole-body simulation models. Accelerometer data on one male subject during drop landings and drop jumps from four heights revealed that peak resultant acceleration tended to decrease with increasing height in the body. Power spectra contained two major components, corresponding to the active voluntary movement (2 Hz 14 Hz) and the impact shock wave (16 Hz 26 Hz). Transfer functions demonstrated progressive attenuation from the MTP joint towards the C6 vertebra within the 16 Hz 26 Hz component. This observed attenuation within the spine and lower-limb joint structures was considered within a rigid body, nine-segment planar torque-driven computer simulation model of drop jumping. Joints at the ankle, knee, hip, shoulder, and mid-trunk were modelled as non-linear spring-dampers. Wobbling masses were included at the shank, thigh, and trunk, with subject-specific biarticular torque generators for ankle plantar flexion, and knee and hip flexion and extension. The overall root mean square difference in kinetic and kinematic time-histories between the model and experimental drop jump performance was 3.7%, including ground reaction force root mean square differences of 5.1%. All viscoelastic displacements were within realistic bounds determined experimentally or from the literature. For an equivalent rigid model representative of traditional frictionless pin joint simulation models but with realistic wobbling mass and foot-ground compliance, the overall kinetic and kinematic difference was 11.0%, including ground reaction force root mean square differences of 12.1%. Thus, the incorporation of viscoelastic elements at key joints enables accurate replication of experimentally recorded ground reaction forces within realistic whole-body kinematics and removes the previous need for excessively compliant wobbling masses and/or foot-ground interfaces. This is also necessary in cases where shock wave transmission within the simulation model must be non-instantaneous.
16

RANS modelling for compressible turbulent flows involving shock wave boundary layer interactions

Asproulias, Ioannis January 2014 (has links)
The main objective of the thesis is to provide a detailed assessment of the performance of four types of Low Reynolds Number (LRN) Eddy Viscosity Models (EVM), widely used for industrial purposes, on flows featuring SWBLI, using experimental and direct numerical simulation data. Within this framework the two-equation linear k-ε of Launder and Sharma (1974) (LS), the two-equation linear k-ω SST, the four-equation linear φ-f of Laurence et al. (2004) (PHIF) and the non-linear k-ε scheme of Craft et al. (1996b,1999) (CLSa,b) have been selected for testing. As initial test cases supersonic 2D compression ramps and impinging shocks of different angles and Reynolds numbers of the incoming boundary layer have been selected. Additional test cases are then considered, including normal shock/isotropic turbulence interaction and an axisymmetric transonic bump, in order to examine the predictions of the selected models on a range of Mach numbers and shock structures. For the purposes of this study the PHIF and CLSa,b models have been implemented in the open source CFD package OpenFOAM. Some results from validation studies of these models are presented, and some explorations are reported of certain modelled source terms in the ε-equation of the PHIF and CLSb models in compressible flows. Finally, before considering the main applications of the study, an examination is made of the performance of different solvers and numerical methods available in OpenFOAM for handling compressible flows with shocks. The performance of the above models, is analysed with comparisons of wall-quantities (skin-friction and wall-pressure), velocity profiles and profiles of turbulent quantities (turbulent kinetic energy and Reynolds stresses) in locations throughout the SWBLI zones. All the selected models demonstrate a broadly consistent performance over the considered flow configurations, with the CLSb scheme generally giving some improvements in predictions over the other models. The role of Reynolds stress anisotropy in giving a better representation of the evolution of the boundary layer in these flows is discussed through the performance of the CLSb model. It is concluded that some of the main deficiencies of the selected models is the overestimation of the dissipation rate levels in the non-equilibrium regions of the flow and the underestimation of the amplification of Reynolds stress anisotropy, especially within the recirculation bubble of the flows. Additionally, the analysis of the performance of the considered EVM's in a normal shock/isotropic turbulence interaction illustrates some drawbacks of the EVM formulation similar to the ones observed in normally-strained incompressible flows. Finally, a hybrid Detached Eddy Simulation (DES) approach is incorporated for the prediction of the transonic buffet around a wing.
17

Design of a Free Field Blast Simulating Shock Tube

Armstrong, Jonathan January 2015 (has links)
A 30.5 cm diameter, detonation driven shock tube facility has been designed, constructed and tested. The design goals of the shock tube were to reproduce free field blast wave profiles on a laboratory scale using atmospheric gaseous detonation as the energy source. Numerical simulations were utilized to explore the gas dynamic evolution inside detonation driven shock tubes and to select the optimal design parameters for the shock tube.The Friedlander profile was used to evaluate the generated pressure profiles as an approximation of free field blast waves. It has been found that the detonation driver length should be kept below 20% of the total length of the tube in order to produce Friedlander waves. Additionally, it has been found that an annular vent can be added to the shock tube to enhance the negative phase of the blast profile, more accurately reproducing real free field blast waves. The shock tube has been constructed in a modular fashion from 2.54 cm thick steel tubing. An adjustable bag type diaphragm has been employed to allow for a variable driver size and a high voltage ignition system is used to initiate detonation in the driver section. Due to the available location for the shock tube, tests using the vented configuration could not be accomplished for safety reasons. Conducted experiments produced results that agree well with corresponding numerical simulations. Overall, the shock tube design was successful in creating Friedlander blast waves. At the time of writing, a manufacturer error in correctly reporting the specifications of the clamps used on the shock tube resulted in a lower maximum pressure of operation.
18

Non-physical finite element method for modelling of material discontinuities

Darvizeh, Roohoolamin January 2014 (has links)
A recent development for the numerical modelling of material discontinuities is presented in this thesis. The concepts considered here are founded on the idea that for each physical variable (e.g. temperature, enthalpy, etc.) there exists an associated non-physical variable. The numerical technique presented here that utilises non-physical variables is called the non-physical finite element method (NPFEM). The NPFEM involves the replacement of a discontinuous physical field with a limiting-continuous non-physical field (i.e. abstract mathematical object) which is continuous over the domain but has a source-like behaviour at the place of a discontinuity. Non-physical variables are rigorously defined in the thesis and are related to their physical counterparts by means of transport equations. As a consequence of the coupling of physical and non-physical variables, equivalent forms of transport equations arise. However, as a consequence of limiting continuity the adopted approach permits the representation of non-physical variables by means of a polynomial basis standard to the continuous Galerkin finite element method (CGFEM).The non-physical method was originally devised for the modelling of material discontinuities in solidification problems involving a strong discontinuity in enthalpy and a weak discontinuity in temperature. The work presented here extends previous works by providing a general framework for the non-physical method to facilitate modelling of strong material discontinuities in all the state variables along with velocity arising with material discontinuities. The approach is founded on the integral transport form of the governing conservation laws. The advantage of the non-physical methodology is that it permits the precise annihilation of discontinuous behaviour in the governing finite element equations by means of a distribution like source term at the discontinuity location. Different case studies of single and multiple stationary and transient 1-D shock waves in fluids and solids are undertaken to show the accuracy, flexibility and robustness of the non-physical finite element method. Also presented as part of the work is a newly developed analytical model for the 1-D high velocity crushing of the cellular bars.
19

Etude de la propagation d’une onde de souffle en milieu non-homogène – étude expérimentale / Study of a shock wave propagation in a non-homogeneous environment - experimental study

Maillot, Yohann 20 December 2018 (has links)
Ces travaux de thèse présentés dans ce mémoire concernent l’évolution d’onde de souffle en milieu non-idéalisé. L’évolution d’une onde de souffle en champ libre peut être décrite par divers résultats empiriques disponibles dans la littérature ou par des formulations théoriques. Pourtant, dès qu’il est question d’approuver les résultats d’un code de simulation décrivant l’évolution une onde de souffle dans un milieu complexe, les connaissances sur le développement des ondes en milieu idéalisé ne suffisent plus. Dès lors, il faut acquérir de nouvelles données expérimentales afin de valider les différents outils de simulation du CEA. Les résultats de ce mémoire s’inscrivent dans ce projet. Des essais à petite échelle ont été dimensionnés afin de correspondre à un scénario avec une nature d’explosif différente de celle employée au laboratoire. La charge utilisée est gazeuse et est constituée de propane-oxygène en proportion stœchiométrique. Pour mesurer les différentes caractéristiques des ondes de souffle et d’acquérir de nouveaux résultats, deux systèmes de mesure ont été utilisées. Des capteurs de pression ont été installés au sol, couplés à un système de visualisation avec une caméra rapide dont le montage se rapproche de l’ombroscopie. Plusieurs configurations ont permis d’avoir une base solide sur les grandeurs définissant les ondes incidentes et réfléchies en champ libre. L’étude porte essentiellement sur la réflexion de Mach. Par la suite des obstacles isolés ont été installés sur le parcours d’une onde incidente ou de Mach afin de représenter des effets de surface. Les résultats ont montré une modification des caractéristiques et de la morphologie des ondes à l’aval des obstacles. / The study presented in this thesis concerns the evolution of a shock wave in a non-idealized environnment. The evolution of a free-field shock wave can be described by various empirical results found in the literature or by theoretical formulations. However, as soon as it is a question of approving the results of a simulation code describing the evolution of a shock wave in a complex environnment, knowledge about the development of waves in a free-field is no longer sufficient. Therefore, new experimental data must be acquired to validate the different simulation tools in-house. The results of this thesis are part of this project. Small-scale tests have been sized to fit a scenario with an explosive nature different from that used in the laboratory. The source used is gaseous and made of propane oxygen at a stoichiometric proportion. To measure the different characteristics of a shock wave and to acquire new results, two measurement systems were used. Pressure sensors have been installed on the ground, coupled with a visualization system with a high speed camera whose is close to shadowscopy. Several configurations allowed to have solid basis on the characteristics defining the incident and reflected shock waves in free field. The study focuses on Mach's reflection moreover on Mach stem. Subsequently isolated obstacles were installed on the path of an incident wave or Mach’s reflection to represent surface effects. The results showed a change in the characteristics and morphology of the waves downstream of the obstacles.
20

Optical Fibre-Based Hydrophone and Critical Ignition in Detonation Cells

Cheevers, Kevin 06 October 2021 (has links)
This thesis is composed of two distinct parts. The first part of this work addresses the problem of critical ignition behind a decaying shock wave in the context of cellular detonations. Low-pressure (4.1 kPa) shock tube experiments were performed in a thin rectangular channel using the highly-unstable mixture of CH4 + 2O2 and the weakly-unstable mixture of 2H2 + O2 + 7Ar, with Schlieren visualization of the flow field. The dynamics of the lead shock in a detonation cell was reconstructed from measurements of the lead shock position and curvature. The post-shock state and the expansion rate along the path of a Lagrangian particle crossing the lead shock at any given point in the cell cycle were evaluated with the shock jump and shock change equations. The chemical evolution behind the shock was then integrated using a detailed chemistry model. Quenching of the post-shock reaction zone was found within the first half of the detonation cell for both mixtures, with quenching occurring earlier in the highly unstable mixture. Simplified models derived from 1-step and 2-step chemistry models very accurately predict the quenching of the post-shock reactions and the evolution of the ignition delay through the cell. The second part describes the assembly and characterization of a fibre-optic probe hydrophone (FOPH) for the measurement of shock waves associated with blast-induced neuro-trauma. Compared to traditional polyvinylidene difluoride (PVDF) hydrophones, the assembled FOPH has a higher bandwidth and smaller active diameter, which are comparable to the characteristic time and thickness of shock waves associated with blast-induced neuro-trauma. However, the sensitivity of FOPHs are substantially lower than traditional hydrophones. We assemble a FOPH and provide detailed calculations and measurements of its sensitivity (0.66 mV/MPa) , noise floor, and spatial resolution. The 150 MHz bandwidth, limited by the photodetector, is sufficient for resolving shock waves with over-pressures of up to 174 kPa with 3 measurement points. Experimental measurements of the system noise gives a floor of 260 Pa/√Hz . A detailed noise analysis finds that the system is limited by photodetector noise (215 Pa/√Hz), which is 4x the fundamental shot noise limit, closely followed by a laser noise of 150 Pa/√Hz. We conclude that the system noise floor is insufficient for resolved measurements of the post-shock pressure in the range associated with blast-induced neuro-trauma. From our noise analysis, we quantify the sensitivity enhancement required for resolving this regime, and we conclude that sensitivity-enhancing fibre-coatings could provide a sufficient increase in sensitivity.

Page generated in 0.0586 seconds