• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applying an Analytical Approach to Shop-Floor Scheduling: A Case Study

Swinehart, Kerry, Yasin, Mahmoud, Guimaraes, Eduardo 01 January 1996 (has links)
In the light of the complex and dynamic factors that exist in a typical production facility, manual development of an optimal shop-floor schedule is computationally impractical. This paper discusses the effective use of an heuristic algorithm approach to shop-floor scheduling at the TRW Rack and Pinion Division (RPD) Plant in Rogersville, Tennessee. The study documents the introduction of FAST, a computerised scheduling system that employs the Genetic Optimisation Algorithm. Results demonstrate a real potential advantage using this system for shop-floor scheduling, thus facilitating TRWs journey of continuous improvement.
2

Studie av artificiell intelligens för ökad resurseffektivitet inom produktionsplanering : En studie med fokus på hur nuvarande samt potentiella implementeringar av artificiell intelligens inom produktionsplanering kan öka resurseffektiviteten hos ett tillverkande företag / A study on artificial intelligence for increased resource efficiency in production planning : A study focusing on how current and potential implementations of artificial intelligence in production planning can increase the resource efficiency of a manufacturing company

Ali, Mahammed Ali January 2021 (has links)
Industri 4.0 har medfört stora förändringar och med denna våg av förändringar har artificiell intelligens tillkommit. AI är inget nytt och har forskats på utvecklats sedan den första datorn uppfanns. Tanken var då enligt Alan Turing fadern av datalogi att om en maskin inte kan särskiljas från en människa då är det en AI. Sedan dess har vi sett flera AI modeller slå människan i olika fält och sett AI teknologiers förmåga. Att AI ska implementeras inom den mest innovativa branschen var inte långtsökt. Industriell AI är till skillnad från vanliga AI modeller en kontrollerad process som hittills tillämpats inom begränsade områden. Eftersom standardisering och systematisk tillvägagångsätt kan likställas som synonymer till industriella verksamheter. Är det ingen skillnad på processer inom fabriker, och AI teknologier måste anpassas efter dessa processer. Det har under det senaste decenniet globalt investerats i innovation inom industrier. Länder världen över vill att deras industrier med Industri 4.0 hamnar i framkanten. Där Tyskland introducerade Industri 4.0, USA Smart Manufacturing Leadership Coalition, Kina deras plan kallad China 2025 och EU tillkännagett Factories for the future. Som en konsekvens av dessa enorma satsningar har denna studie som mål att se hur AI kan hjälpa tillverkande företag öka resurseffektiviteten inom produktionsplanering. Eftersom forskningsområdet är relativt nytt kommer studien basera resultaten på fallstudier där ABB och Scania intervjuas. Dock behöver detta område mer forskning. / The global introduction of Industry 4.0 has brought with it changes within industry. The indirect consequence of Industry 4.0 being artificial intelligence. The idea of AI is as old as the invention of computers with Alan Turing the father of computer science stating the first description of AI. His thought was that if a machine could be mistaken for a human then the machine was intelligent. The thought being that machine never could outperform humans back then. Now in modern times we have witnessed great feats made by intelligent algorithms where they outperform humans in various fields. For AI to be implemented in industry the most innovative buisness it has to adapt to the workings of indutrial processes. Systematic approach and standardization being two values that strongly represents industries. During the last decade global initiative and investment in innovation of industry. Has led to global competitors such as Germany creating Industry 4.0, The United States creating Smart Manufacturing Leadership Coalition, China introducing their plan called China 2025 and EU with Factories for the future. This paper is a reaction of these enormous investments made into Industry 4.0. The objective of this paper is to examine how AI can help manufacturing enterprises increase their resource efficiency within production planning. Since this field of science stillbeing in its infancy this paper will base its result on interviews made with companies as ABB and Scania. However this field needs more work.
3

印刷電路板工廠現場排程之研究 / A Study of Shop Floor Scheduling on a PCB Manufacturing System

黃萱懿, Huang, Shuan-yi Unknown Date (has links)
近年來,印刷電路板(printed circuit board, PCB)產業在台灣蓬勃發展,對台灣經濟表現有相當重要的影響;與此同時,產業內各廠商卻因內外環境變異等因素,而面臨日益激烈的競爭壓力。本研究針對產業前段的生產工廠(PCB manufacturing)從管理面探討問題來源,發現各廠商所導入的管理系統(MRP、ERP、SCM等)均缺乏現場排程(shop floor scheduling)功能,因此造成排程結果不具可行性,連帶導致管理系統的績效也未如預期理想。   為解決該產業所面臨的現場排程問題,本研究透過個案訪談方式,對產業特性深入了解,歸類此類問題為排程領域中的流程型工廠排程問題(flow shop scheduling)。   在求解過程中,本研究以總延遲時間(total tardiness)最小化為目標,並以禁忌搜尋法(tabu search)作為最佳化過程的演算法。於理論探討後,本研究亦實際建置一套排程系統,並以來自個案工廠的訂單資料實際求解,以評估此系統績效。

Page generated in 0.1085 seconds