Spelling suggestions: "subject:"shortterm elasticity"" "subject:"shortterm clasticity""
1 |
Effect of Channel Stochasticity on Spike Timing Dependent PlasticityTalasila, Harshit Sam 20 December 2011 (has links)
The variability of the postsynaptic response following a presynaptic action potential arises from: i) the neurotransmitter release being probabilistic and ii) channels in the postsynaptic cell involved in the response to neurotransmitter release, having stochastic properties. Spike timing dependent plasticity (STDP) is a form of plasticity that exhibits LTP or LTD depending on the precise order and timing of the firing of the synaptic cells. STDP plays a role in fundamental tasks such as learning and memory, thus understanding and characterizing the effect variability in synaptic transmission has on STDP is essential. To that end a model incorporating both forms of variability was constructed. It was shown that ion channel stochasticity increased the magnitude of maximal potentiation, increased the window of potentiation and severely reduced the post-LTP associated LTD in the STDP curves. The variability due to short term plasticity decreased the magnitude of maximal potentiation.
|
2 |
Effect of Channel Stochasticity on Spike Timing Dependent PlasticityTalasila, Harshit Sam 20 December 2011 (has links)
The variability of the postsynaptic response following a presynaptic action potential arises from: i) the neurotransmitter release being probabilistic and ii) channels in the postsynaptic cell involved in the response to neurotransmitter release, having stochastic properties. Spike timing dependent plasticity (STDP) is a form of plasticity that exhibits LTP or LTD depending on the precise order and timing of the firing of the synaptic cells. STDP plays a role in fundamental tasks such as learning and memory, thus understanding and characterizing the effect variability in synaptic transmission has on STDP is essential. To that end a model incorporating both forms of variability was constructed. It was shown that ion channel stochasticity increased the magnitude of maximal potentiation, increased the window of potentiation and severely reduced the post-LTP associated LTD in the STDP curves. The variability due to short term plasticity decreased the magnitude of maximal potentiation.
|
3 |
Quantitative Simulation of Synaptic Vesicle Release at the Neuromuscular JunctionMa, Jun 01 May 2014 (has links)
Nerve signals in the form of action potentials are relayed between neurons through specialized connections called synapses via neurotransmitter released from synaptic vesicles. The release process is Ca2+ dependent, and relies on fusion of neurotransmitter filled synaptic vesicle with the presynaptic membrane. During high frequency stimulation, the amount of vesicle release increases at some synapses (e.g., frog neuromuscular junction (NMJ)), a process known as short-term plasticity. Due to the micron scale size of the presynaptic active zone where vesicle fusion takes place, experimentally study is often difficult. Thus, computational modeling can provide important insight into the mechanism of synaptic vesicle release at active zones. In the first part of my thesis, I used the frog NMJ as a model synapse for computer simulation studies aimed as testing various mechanistic hypotheses proposed to underlie short-term plasticity. Building off a recently reported excess-bindingsite model of synaptic vesicle release at the frog NMJ (Dittrich et al., 2013), I have investigated several mechanisms of short-term facilitation at the frog NMJ. My studies placed constraints on previously proposed mechanistic models, and concluded that the presence of a second calcium sensor protein on synaptic vesicles distinct from synaptotagmin, can explain known properties of facilitation observed at the frog NMJ. In addition, I was able to identify a second facilitation mechanism, which relied on the persistent binding of calcium bound synaptotagmin molecules to lipids of the presynaptic membrane. In the second part of my thesis, I investigated the structure function relationship at active zones, with the hypothesis that active zones are organized from the same basic synaptic building block consisting of a docked vesicle and a small number of closely associated voltage-gated-calcium-channels (VGCCs). To test this hypothesis, I constructed a vesicle release model of the mouse NMJ by reassembling frog NMJ model building blocks based on electron-microscopy imaging data. These two models successfully predicted the functional divergence between frog and mouse NMJ in terms of average vesicle release and short-term plasticity. In the meanwhile, I found that frog NMJ loses facilitation when VGCCs were systematically removed from active zone. By tracking Ca2+ ions from each individual VGCCs, I further show how the difference in short-term plasticity between frog and mouse NMJ may rise from their distinct release building block assemblies. In summary, I have developed a stochastic computer model of synaptic transmission, which not only shed light on the underlying mechanisms of short-term plasticity, but was also proved powerful in understanding structural and functional relationships at synaptic active zones.
|
4 |
Molecular physiology of signal transmission along the auditory pathwayButola, Tanvi 16 May 2017 (has links)
No description available.
|
5 |
Neural Computation Through Synaptic Dynamics in Serotonergic NetworksLynn, Michael Benjamin Fernando 14 August 2023 (has links)
Synapses are a fundamental unit of computation in the brain. Far from being passive connections between spiking neurons, synapses display striking short-term dynamics, undergo long-term changes in strength, and sculpt network-level processes in a complex manner. These synaptic dynamics, both in time and across space, may be a fundamental determinant of population-level computations and behavioral output of the brain, yet their role in neuromodulatory circuits is relatively under-explored. First, I developed and validated a set of likelihood-based inference tools to quantify the dynamics of synaptic ensemble composition throughout development. Second, I examined network computations in the serotonergic dorsal raphe nucleus through a dynamical lens, exploring the role of short-term synaptic dynamics at sparse recurrent connections, and of distinct long-range synaptic inputs, in shaping the output of spiking populations. 1. Simulation-based inference of synaptic ensembles. Functional features of synapses are typically inferred by sampling small ensembles of synapses, yet it is unclear if such subsamples exhibit biases. I developed a statistical framework to address this question, using it to demonstrate that common bulk electrical stimulation methods for characterizing the fraction of silent synapses exhibit high bias and variance, and using typical sample sizes, possess insufficient statistical power for accurate inference. I developed and validated a novel synthetic likelihood-based inference approach based on a simulator of the underlying experimental methodology. This new estimator, made available in an object-oriented Python toolbox, reduces bias and variance compared to previously reported methods, and provides a scalable method for examining synaptic dynamics throughout development. These tools were validated by targeted recording from hippocampal CA1 neurons in juvenile mice, where they reveal fundamental tradeoffs between release probability, number of synapses sampled, and statistical power. 2. Synaptic dynamics and population computations in the serotonin system. This part is comprised of two manuscripts. First, in the dorsal raphe nucleus, I uncovered slow, inhibitory recurrent interactions between serotonin neurons that are generated by local serotonin release. These connections were probabilistic, displayed striking short-term facilitation, gated the spiking output of serotonin neurons, and could be activated by long-range excitatory input from lateral habenula, representing threat signals. Targeted physiology and modeling revealed that these recurrent short-term facilitation features generated paradoxical excitation-driven inhibition in response to high-frequency habenula input. These facilitation rules additionally supported winner-take-all dynamics at the population level, providing a contrastive operation between functionally distinct serotonergic ensembles. Behaviorally, activating long-range lateral habenula input to dorsal raphe nucleus generated a transient, frequency-dependent suppression of reward anticipation consistent with these recurrent dynamics, without modulating the underlying reward association itself. These dynamics, we suggest, support sharp behavioral state transitions in changing environments. In a second manuscript, I explored the multiplexing of distinct long-range inputs in serotonergic circuits through spike synchrony. I demonstrated that a population of serotonergic neurons receives input from both lateral habenula and prefrontal cortex. These inputs produced similar subthreshold events, but prefrontal cortex triggered spikes with much higher latencies, supporting a population synchrony code for input identity. These input-specific spike timing patterns could be read out by simple linear decoders with high accuracy, suggesting they could be demultiplexed by downstream circuits receiving sparse innervation by serotonergic axons. We uncovered a novel intracellular calcium conductance in serotonergic neurons that altered the spectral characteristics of membrane voltage in a manner sufficient to generate long-latency, power law-distributed spike times, suggesting a simple dynamical origin for the production of synchronous or asynchronous spiking. This work indicates that serotonergic circuits can multiplex distinct informational streams through population spike synchrony mechanisms. Together, these investigations reveal that the dynamics of short-term facilitation and synaptic ensemble composition can act as the fundamental substrate for flexible computation by spiking networks across the brain.
|
6 |
Network mechanisms of memory storage in the balanced cortex / Mécanismes de réseau de stockage de mémoire dans le cortex équilibréBarri, Alessandro 08 December 2014 (has links)
Pas de résumé en français / It is generally maintained that one of cortex’ functions is the storage of a large number of memories. In this picture, the physical substrate of memories is thought to be realised in pattern and strengths of synaptic connections among cortical neurons. Memory recall is associated with neuronal activity that is shaped by this connectivity. In this framework, active memories are represented by attractors in the space of neural activity. Electrical activity in cortical neurones in vivo exhibits prominent temporal irregularity. A standard way to account for this phenomenon is to postulate that recurrent synaptic excitation and inhibition as well as external inputs are balanced. In the common view, however, these balanced networks do not easily support the coexistence of multiple attractors. This is problematic in view of memory function. Recently, theoretical studies showed that balanced networks with synapses that exhibit short-term plasticity (STP) are able to maintain multiple stable states. In order to investigate whether experimentally obtained synaptic parameters are consistent with model predictions, we developed a new methodology that is capable to quantify both response variability and STP at the same synapse in an integrated and statistically-principled way. This approach yields higher parameter precision than standard procedures and allows for the use of more efficient stimulation protocols. However, the findings with respect to STP parameters do not allow to make conclusive statements about the validity of synaptic theories of balanced working memory. In the second part of this thesis an alternative theory of cortical memory storage is developed. The theory is based on the assumptions that memories are stored in attractor networks, and that memories are not represented by network states differing in their average activity levels, but by micro-states sharing the same global statistics. Different memories differ with respect to their spatial distributions of firing rates. From this the main result is derived: the balanced state is a necessary condition for extensive memory storage. Furthermore, we analytically calculate memory storage capacities of rate neurone networks. Remarkably, it can be shown that crucial properties of neuronal activity and physiology that are consistent with experimental observations are directly predicted by the theory if optimal memory storage capacity is required.
|
7 |
Modelação de fenômenos de plasticidade rápida no sistema visual de mamíferos / Modeling Fast Plasticity Phenomena in the Mammalian Primary Visual CortexOliveira, Rodrigo Freire 09 October 2006 (has links)
Neurônios do córtex visual primário (V1) são seletivos à orientação, direção e freqüência espacial de estímulos apresentados em seus campos receptivos. Os últimos 40 anos acumularam uma quantidade considerável de teorias e dados sobre o processamento cortical de seletividade. Apesar disso, um consenso sobre os mecanismos que geram preferência a orientação, uma das características mais marcantes do processamento visual inicial, ainda está longe de ser atingido. Este cenário torna-se ainda mais interessante quando se considera evidências recentes de plasticidade operando em diferentes escalas temporais em estágios iniciais como V1, que resultam em uma organização dinâmica da seletividade à orientação que se pensava rígida e inflexível no córtex adulto até então. Neste trabalho, descreve-se a construção de um modelo neuronal do córtex visual de primatas composto de 6 camadas corticais representando o canal M de processamento visual. As características fisiológicas e neuroanatômicas do modelo foram derivadas a partir de dados experimentais do sistema visual de primatas. Na primeira parte deste trabalho, o perfil de seletividade à orientação do modelo é apresentado e comparado com resultados experimentais. Os neurônios modelados apresentaram diversidade em seus padrões de seletividade a orientação consistente com dados experimentais (medidos com ISO, VC, MBA). Esta diversidade reflete a heterogeneidade de classes eletrofisiológicas presente no modelo e os diferentes padrões de circuitaria laminar. Na segunda parte examina-se o papel de plasticidade de curto termo na circuitaria intracortical na alteração dinâmica dos perfis de seletividade orientação. Depressão e deslocamento da resposta na vizinhança da orientação preferida foram observados mas não aumento em pontos distantes. Os neurônios simulados apresentaram alguma diversidade nos perfis de plasticidade de curto prazo restrita a camadas com com alta densidade de células com disparo em rajada. / V1 neurons are selective for the orientation, direction and spatial frequency of stimuli presented at their receptive fields. The last 40 years have witnessed the accumulation of a considerable amount of theory and data about the cortical processing of feature selectivity. Yet the mechanisms that underly orientation preference, one of the most conspicuous features of early visual cortical processing, remain far from reaching a consensus. This landscape gets even richer with the recent recognition of different time scales of plasticity operating as early as V1 resulting in a dynamic organization of orientation selectivity previously thought to be rigid and unmodifiable in the adult cortex. In this work we present a spiking neuron model of the primate primary visual cortex composed of 6 cortical layers, representing the M channel of visual processing. The physiological and architectural properties of the model were derived from experimental data for the primate visual pathway. In the first part we present the orientation selectivity profile of the model and discuss its relationship to experimental reports. Neurons have shown a diversity of orientation selectivity dependent responses consistent with data (measured with OSI, CV, HWB). This diversity is thought to reflect the electrophysiological heterogeneity of model cortical cells and the different patterns of laminar circuitry. In the second part of this study we examine the role of shortterm plasticity of the intracortical circuitry in the dynamic modification of orientation selectivity profiles. Depression and shift around preferred orientation but not enhancement at the far flank of the tuning curves are observed. Simulated neurons have also shown some diversity in short-term plasticity restricted to layers with high density of bursting cells.
|
8 |
Modelação de fenômenos de plasticidade rápida no sistema visual de mamíferos / Modeling Fast Plasticity Phenomena in the Mammalian Primary Visual CortexRodrigo Freire Oliveira 09 October 2006 (has links)
Neurônios do córtex visual primário (V1) são seletivos à orientação, direção e freqüência espacial de estímulos apresentados em seus campos receptivos. Os últimos 40 anos acumularam uma quantidade considerável de teorias e dados sobre o processamento cortical de seletividade. Apesar disso, um consenso sobre os mecanismos que geram preferência a orientação, uma das características mais marcantes do processamento visual inicial, ainda está longe de ser atingido. Este cenário torna-se ainda mais interessante quando se considera evidências recentes de plasticidade operando em diferentes escalas temporais em estágios iniciais como V1, que resultam em uma organização dinâmica da seletividade à orientação que se pensava rígida e inflexível no córtex adulto até então. Neste trabalho, descreve-se a construção de um modelo neuronal do córtex visual de primatas composto de 6 camadas corticais representando o canal M de processamento visual. As características fisiológicas e neuroanatômicas do modelo foram derivadas a partir de dados experimentais do sistema visual de primatas. Na primeira parte deste trabalho, o perfil de seletividade à orientação do modelo é apresentado e comparado com resultados experimentais. Os neurônios modelados apresentaram diversidade em seus padrões de seletividade a orientação consistente com dados experimentais (medidos com ISO, VC, MBA). Esta diversidade reflete a heterogeneidade de classes eletrofisiológicas presente no modelo e os diferentes padrões de circuitaria laminar. Na segunda parte examina-se o papel de plasticidade de curto termo na circuitaria intracortical na alteração dinâmica dos perfis de seletividade orientação. Depressão e deslocamento da resposta na vizinhança da orientação preferida foram observados mas não aumento em pontos distantes. Os neurônios simulados apresentaram alguma diversidade nos perfis de plasticidade de curto prazo restrita a camadas com com alta densidade de células com disparo em rajada. / V1 neurons are selective for the orientation, direction and spatial frequency of stimuli presented at their receptive fields. The last 40 years have witnessed the accumulation of a considerable amount of theory and data about the cortical processing of feature selectivity. Yet the mechanisms that underly orientation preference, one of the most conspicuous features of early visual cortical processing, remain far from reaching a consensus. This landscape gets even richer with the recent recognition of different time scales of plasticity operating as early as V1 resulting in a dynamic organization of orientation selectivity previously thought to be rigid and unmodifiable in the adult cortex. In this work we present a spiking neuron model of the primate primary visual cortex composed of 6 cortical layers, representing the M channel of visual processing. The physiological and architectural properties of the model were derived from experimental data for the primate visual pathway. In the first part we present the orientation selectivity profile of the model and discuss its relationship to experimental reports. Neurons have shown a diversity of orientation selectivity dependent responses consistent with data (measured with OSI, CV, HWB). This diversity is thought to reflect the electrophysiological heterogeneity of model cortical cells and the different patterns of laminar circuitry. In the second part of this study we examine the role of shortterm plasticity of the intracortical circuitry in the dynamic modification of orientation selectivity profiles. Depression and shift around preferred orientation but not enhancement at the far flank of the tuning curves are observed. Simulated neurons have also shown some diversity in short-term plasticity restricted to layers with high density of bursting cells.
|
9 |
A Quantitative Description of the Interaction of Enhancement and Depression of Transmitter Release at the Neuromuscular JunctionHolohean, Alice Marie 21 December 2007 (has links)
Synaptic transmission alters the strength of the postsynaptic potential, through a process called short-term synaptic plasticity (STP). In this study, endplate potentials (EPPs) from the frog neuromuscular junction were used to resolve and quantify the presynaptic components involved in enhancement and depression of transmitter release during repetitive stimulation under normal quantal release conditions (2 mM Ca2+, 1mM Mg2+). During trains of stimulation given between 10 - 200 Hz, the amplitude of the EPPs first increased then decreased; a maximum increase of 77% was produced after 2-4 stimuli. EPP amplitudes began to increase at ~ 20 Hz, were maximal at ~ 55 Hz, and thereafter, decreased as the rate of stimulation increased. The integrated total release after 25 stimuli was little changed across frequencies between 10 - 100 Hz. EPPs ran down in two phases: a fast phase, attributed to the depletion of a readily releasable pool (RRP) of synaptic vesicles, followed by a slow phase, attributed to the depletion of vesicles from a depot pool (DP). Depletion of the readily releasable pool of synaptic vesicles (RRP) was determined by quantifying release under the fast and slow time rundowns and subtracting the number of vesicles associated with mobilization to the RRP from the total number of vesicles released during stimulation trains of 50 impulses. Impulses were delivered at 12 different rates ranging from 50 to 200 /s. Estimates of the number of vesicles released from the RRP increased with frequency of stimulation until maximal depletion levels of 5500 - 6000 vesicles were reached at stimulation rates between 90-130/s, assuming a control quantal content of 200 vesicles released per impulse. Depletion was less at lower frequencies when the number of stimuli delivered was identical. When the RRP maximally depleted, release was inversely related to stimulation rate, as would be expected if mobilization from the depot pool was the sole determinate of release during the slow phase. An equation constructed from four known components of enhancement and two components of depression - the depletion of vesicles from a readily releasable pool (RRP) and from the depot pool (DP) that refills the RRP, was used to fit and then simulate EPPs obtained during trains using different patterns of stimulation and varying amounts of extracellular Ca2+; the decay time constant parameters of enhancement, numerically derived from the observed data, were fixed at tau ~ 46, 220, 1600, and 20000 ms. The number of components of enhancement necessary to approximate the data decreased, from four in low (0.14 - 0.2mM) extracellular Ca2+, to one (tau ~ 46 ms) in 2.0 mM extracellular Ca2+, but four components of enhancement were necessary to fit the data when the amplitude of the EPP was not depressed below the control amplitude. This model was able to predict within ~ 3 % EPP amplitudes over a 10-fold range of frequency and Ca2+ concentration.
|
10 |
Μελέτη της βραχύχρονης πλαστικότητας του σωματοαισθητικού φλοιού του ανθρώπου μέσω χωροχρονικού εντοπισμού των μαγνητικών δίπολων σε ηλεκτρική διέγερση των δακτύλωνΣταυρινού, Μαρία 19 December 2008 (has links)
Η μελέτη της πλαστικότητας του ανθρώπινου εγκεφάλου σε όλα τα επίπεδα
είναι ένα πολύ σημαντικό βήμα στην εξερεύνηση της λειτουργίας του
εγκεφάλου και παίζει πολύ σημαντικό ρόλο στον σχεδιασμό θεραπειών
αποκατάστασης μετά από εγκεφαλικές και κινητικές βλάβες. Τα τελευταία
είκοσι χρόνια έχει καθιερωθεί πλέον η ιδέα ότι ο ώριμος εγκέφαλος μπορεί να
ανακατανέμει τις περιοχές του στην περίπτωση μιας βλάβης ή στην περίπτωση
περισσότερης χρήσης ή νέας λειτουργίας, αναδιοργανώνοντας έτσι την
λειτουργικότητά του. Και ενώ υπάρχουν αρκετές μελέτες σε ζώα και λιγότερες
σε ανθρώπους όπου μελετάται η χωρική έκταση των αλλαγών αυτών, λίγες
εργασίες υπάρχουν που να μελετούν τη δυναμική των αλλαγών αυτών σε ένα
πεδίο χρόνου μερικών ωρών.
Η παρούσα διδακτορική διατριβή συνεισφέρει ακριβώς σε αυτόν τον τομέα: τη
μελέτη των πλαστικών αλλαγών σε ένα εύρος χρόνου 6 ωρών με διαδοχικές
μαγνητοεγκεφαλογραφικές (ΜΕΓ) μετρήσεις ανά μία ώρα της αναπαράστασης
των δακτύλων στον πρωτεύοντα σωματοαισθητικό φλοιό. Μέχρι τώρα στην
βιβλιογραφία οι μελέτες για βραχύχρονη πλαστικότητα εστίαζαν στη μελέτη
αλλαγών μετά από συγκεκριμένη σωματοαισθητική διέγερση για συγκεκριμένο
κάθε φορά χρόνο από μερικά λεπτά και έως τρεις με τέσσερις ώρες. Τα
αποτελέσματα των ερευνών αυτών παρουσιάστηκαν διαφορετικά για
διαφορετικούς χρόνους μελέτης. Έτσι και για την περίπτωση των δακτύλων
στον σωματοαισθητικό φλοιό, μετά από σύντομο χρονικό διάστημα
σωματοαιθητικής αλλαγής, η Ευκλείδεια απόσταση μεταξύ των μελετούμενων
περιοχών έδειχνε να συρρικνώνεται (Braun et al, 2000; Ziemus et al, 2000) ενώ
μετά από περισσότερο χρονικό διάστημα, αυτή να αυξάνεται (Godde et al,
2003; Schaeffer et al, 2004).
Η παρούσα μελέτη, συνεισφέρει στην έρευνα της δυναμικής των πλαστικών
αλλαγών σε μικρό εύρος χρόνου. Το πρωτόκολλο, είναι εμπνευσμένο από το
πρώτο πείραμα πού έδειξε την ύπαρξη πλαστικότητας στον ώριμο εγκέφαλο
μέσω της δημιουργίας συνδακτυλίας σε πιθήκους (Allard et al, 1988; 1991). Οι
συγγραφείς παρατήρησαν σημαντικές αλλαγές στην αντιπροσώπεση των δύο αυτών δακτύλων στον σωματοαισθητικό φλοιό (Δ3 και Δ4) μετά από 3-7.5
μήνες. Οι δύο περιοχές εμφανίστηκαν ενοποιημένες, και χωρίς την
διαχωριστική γραμμή που συνήθως τις διαχωρίζει. Επίσης παρατηρήθηκε η
ύπαρξη ιδιοδεκτικών πεδίων που ανταποκρίνονταν στον ερεθισμό και των δύο
δακτύλων. Οι συγγραφείς εξέφρασαν αυτό το αποτέλεσμα ως μία ένδειξη του
ρόλου του χρονικού συγχρονισμού όπως εκφράζεται και με την αρχή του Hebb
για την ομαδοποίηση των εισερχόμενων σημάτων και τον σχηματισμό των
ιδιοδεκτικών πεδίων στον φλοιό.
Το πρωτόκολλο που χρησιμοποιήθηκε στην παρούσα μελέτη και εμπνευσμένο
από το προηγούμενο πείραμα περιλαμβάνει το δέσιμο των δακτύλων του
δεξιού χεριού εθελοντών από τον δείκτη (Δ2) έως το μικρό δάκτυλο (Δ5) και
τον ξεχωριστό ηλεκτρικό ερεθισμό των Δ2 και Δ5 για τον εντοπισμό της
αντιπροσώπευσής τους στον σωματοαισθητικό φλοιό μέσα σε συνολικό
χρονικό διάστημα 5.5 ωρών. Οι καταγραφές πραγματοποιήθηκαν με την
τεχνική της Μαγνητοεγκεφαλογραφίας, και η ανάλυση έγινε βάσει της
μεθόδου της Μαγνητικής Απεικόνισης Πηγών (Μagnetic Source Imaging). H
MΕΓ, χάρη της μη αλλοίωσης των μαγνητικών σημάτων από τις ενδιάμεσες
δομές του εγκεφάλου χαρίζει καλλίτερο εντοπισμό των ενεργοποιημένων
περιοχών. Το κάθε πείραμα αποτελείτο από 7 ΜΕΓ μετρήσεις, με διαλείμματα
μεταξύ των μετρήσεων. Η μέση απόσταση μεταξύ των καταγραφών ήταν
περίπου 50 λεπτά της ώρας και το κάθε διάλειμμα διαρκούσε μισή ώρα. Η
πρώτη καταγραφή έγινε πριν το δέσιμο των δακτύλων. Επίσης καταγραφές της
ποσότητας του ηλεκτρικού παλμού (Sensory nerve action potential, SNAP)
πάνω στο ωλένιο και μέσο νεύρο γινόταν ταυτόχρονα για την διασφάλιση της
σταθερότητας του ηλεκτρικού παλμού που εισέρχεται στο σωματοαισθητικό
φλοιό. Δύο πειράματα ελέγχου συμπληρώνουν το πρωτόκολλο, σε μερικούς
από τους συμμετέχοντες, ένα με επανάληψη της διαδικασίας χωρίς δέσιμο των
δακτύλων μετά από μερικούς μήνες και ένα με συμπληρωματικές ταυτόχρονες
μετρήσεις στο άλλο ημισφαίριο. Τέλος η ανατομική μαγνητική τομογραφία,
για κάθε συμμετέχοντα λήφθηκε, για επιβεβαίωση του εντοπισμού του
ισοδύναμου διπόλου. Μέσω της τεχνικής λοιπόν του ισοδύναμου δίπολου, για κάθε δάκτυλο και
κάθε ΜΕΓ καταγραφή κατά την διάρκεια των 5.5 ωρών εντοπίστηκε το
ισοδύναμο δίπολο που χαρακτηρίζει το κέντρο βάρους της αντιπροσώπευσης
του μεσοποιημένου προκλητού δυναμικού στον πρωτοταγή σωματοαισθητικό
φλοιό. Στην συνέχεια ελήφθησαν οι συντεταγμένες του. Μετά την επεξεργασία
προ-ανάλυσης του σήματος, μελετήθηκε το ισοδύναμο δίπολο που περιγράφει
την κορυφή P30m. Το κύμα P30m προσδιορίζει την είσοδο του ηλεκτρικού
σήματος στον σωματοαισθητικό φλοιό. Η θέση του διπόλου κατά τη διάρκεια
των μετρήσεων παρουσίασε στατιστικώς σημαντικές αλλαγές, παραμένοντας
εντούτοις μέσα στον σωματοαισθητικό φλοιό. Όπως έχει αποδειχθεί και από
άλλες μελέτες, στατιστικά σημαντικές αλλαγές στη θέση του ισοδύναμου
διπόλου ισοδυναμούν με αλλαγές στην σωματοτοπία (Hodzic et al, 2004;
Pleger et al, 2003; 2001). Τα αποτελέσματά λοιπόν έδειξαν ότι συμβαίνουν
στατιστικώς σημαντικές αλλαγές στην Ευκλείδεια απόσταση (ΕΑ) των
περιοχών μέσα στις 5 περίπου ώρες που διαρκεί η ‘τεχνητή συνδακτυλία’ που
επιβάλαμε.
Αναλυτικά, και όπως φαίνεται στην Εικόνα 1, στην διάρκεια της πρώτης μισής
ώρας, μια μείωση της ΕΑ μεταξύ του δεύτερου (Δ2) και πέμπτου δακτύλου
(Δ5) έλαβε χώρα ακολουθούμενη από μία αύξηση της ΕΑ για τις επόμενες δύο
ώρες. Στη συνέχεια, ξεκινάει μια μείωση της ΕΑ η οποία διαρκεί πάλι περίπου
2 ωρες. Σημειώνουμε εδώ ότι στα πειράματα ελέγχου, δεν παρατηρήθηκαν
αλλαγές στην ΕΑ μεταξύ των δακτύλων, κάτι που μας κάνει να πιστεύουμε ότι
η αλλαγές στην ΕΑ οφείλονται αποκλειστικά στην νέα σωματοαισθητική
κατάσταση που δημιουργήθηκε με το δέσιμο των δακτύλων.
Οι παρατηρούμενες αλλαγές, οι οποίες συμβαίνουν καθ’ όλη τη διάρκεια των
έξι ωρών, οδηγούν στο συμπέρασμα ότι συμβαίνει μία συνεχής ανακατανομή
(remapping) των περιοχών των δύο δακτύλων στη διάρκεια του χρόνου αυτού.
Σημειώνουμε εδώ ότι στα πειράματα ελέγχου, δεν παρατηρήθηκαν αλλαγές
στην ΕΑ μεταξύ των δακτύλων, κάτι που μας κάνει να πιστεύουμε ότι οι
αλλαγές στην ΕΑ οφείλονται αποκλειστικά στην νέα σωματοαισθητική
κατάσταση που δημιουργήθηκε με το δέσιμο των δακτύλων. Επειδή ενδείξεις
δεν έχουμε για αλλαγή στην ισχύ του διπόλου συμπεραίνουμε ότι οι αλλαγές αυτές οφείλονται σε μετατόπιση και όχι σε εξάπλωση των αντίστοιχων
περιοχών της αντιπροσώπευσης των δακτύλων. Ιδιαίτερο ενδιαφέρον παρουσιάζει το γεγονός ότι οι αλλαγές που
παρατηρήσαμε συμβαδίζουν με αλλαγές άλλων ερευνητών στον
σωματοαισθητικό φλοιό, ανάλογα με τον χρόνο της παρατήρησης. Δηλαδή,
παρόμοιες αλλαγές συμβαίνουν στους αντίστοιχους χρόνους. Αναλυτικά,
αύξηση της ΕΑ έχει παρατηρηθεί σε μικρά χρονικά διαστήματα ενώ μείωση
της ΕΑ μετά από μεγαλύτερα (της τάξεως των μερικών ωρών) διαστήματα
μετά από κάποια σωματοαισθητική αλλαγή/τροποποίηση. Τα αποτελέσματά
μας λοιπόν ενοποιούν τα προηγούμενα αποτελέσματα παρουσιάζοντας ένα
ενοποιημένο χρονικό πλαίσιο μέσα στο οποίο παρουσιάζονται οι αλλαγές
αυτές.
Ένα συμπέρασμα που μπορεί να εξαχθεί είναι ότι η ανακατανομή των
ιδιοδεκτικών πεδίων των νευρώνων του σωματοαισθητικού φλοιού γίνεται με
μη γραμμικό τρόπο. Ο εγκέφαλος προκειμένου να προσδιορίσει τις ομάδες
νευρώνων που αναπαριστούν καλλίτερα τη νέα σωματοαισθητική
πραγματικότητα ανακαταμερίζει τις δυνάμεις του και επαναπροσδιορίζει τα
όριά του. Η αναδιάρθρωση των χαρτών του εγκεφάλου σε τόσο μικρά χρονικά
διαστήματα έχει αποδοθεί σε μεταβολή της αναστολής.
Το γεγονός ότι οι αλλαγές αυτές στην αναπαράσταση των δακτύλων Δ2 και Δ5
έγιναν τόσο γρήγορα δεν πρέπει να μας εκπλήσσει καθώς μελέτες σε in vivo και in vitro έχουν αποδείξει ότι παρόμοιες αλλαγές στο συναπτικό επίπεδο
συμβαίνουν σε χρονικά όρια παρόμοια με αυτά του πειράματός μας, όπως στο
LTP και LTD. Επίσης, άλλοι μηχανισμοί όπως αυτοί της ομοιόστασης
συμμετέχουν ενεργά σε παρόμοιες περιπτώσεις που έχει παρουσιαστεί
πλαστικότητα μετά από αλλαγή στην σωματοαισθητική εμπειρία. Η παρούσα
μελέτη εκτός του ότι θέτει ένα χρονικό πλαίσιο μέσα στο οποίο, διαφορετικές
αλλαγές στην ΕΑ λαμβάνουν χώρα, αποτελεί μια πρώτη ένδειξη της
σημαντικότητας του χρόνου ως παραμέτρου σε ηλεκτροφυσιολογικές
μετρήσεις. / The adult primary somatosensory cortex (SI) exhibits a detailed topographic organization of the hand and fingers, which undergoes plastic reorganizational changes following modifications of the sensory input. Although the spatial properties of these changes have been extensively investigated, little is known about their temporal dynamics. The current PhD thesis, contributes exactly to this field: to the study of plastic changes in time frame of 6 hours with consecutive Magnetoencephalographic measurements every hour. The inspiration for the protocol came from the finger webbing paradigm first employed to study adult human representational plasticity. In this paradigm of finger webbing, 4 fingers are temporarily webbed together, hence modifying their sensory feedback, for about 6 hours. We used Magnetoencephalography, a non invasive technique to study magnetic fields of the human brain, in order to measure changes in the hand representation in SI, before, during, and after finger webbing for this time frame of 6 hours. Cortical sources representing the index and little finger were localized using electric current stimulation and with the Equivalent Current Dipole method for all the recording sessions. Our results showed a decrease in the Euclidean distance (ED) between the cortical sources of the index and small finger 30 min after webbing, followed by an increase lasting for about 2 h after webbing, which was followed by a return toward baseline values. These results provide a unique frame in which the different representational changes occur, merging previous findings that were only apparently controversial, in which either increases or decreases in ED were reported after sensory manipulation for relatively long or short duration, respectively. Moreover, these observations further confirm that the mechanisms that underlie cortical reorganization are extremely rapid in their expression and, for the first time, show how brain reorganization occurs over time.
|
Page generated in 0.0748 seconds