• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 23
  • 19
  • 17
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • 3
  • 3
  • 3
  • Tagged with
  • 537
  • 537
  • 537
  • 147
  • 117
  • 109
  • 90
  • 68
  • 60
  • 59
  • 56
  • 56
  • 55
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Prediction of the number of weekly covid-19 infections : A comparison of machine learning methods

Branding, Nicklas January 2022 (has links)
The thesis two-folded problem aim was to identify and evaluate candidate Machine Learning (ML) methods and performance methods, for predicting the weekly number of covid-19 infections. The two-folded problem aim was created from studying public health studies where several challenges were identified. One challenge identified was the lack of using sophisticated and hybrid ML methods in the public health research area. In this thesis a comparison of ML methods for predicting the number of covid-19 weekly infections has been performed. A dataset taken from the Public Health Agency in Sweden consisting of 101weeks divided into a 60 % training set and a 40% testing set was used in the evaluation. Five candidate ML methods have been investigated in this thesis called Support Vector Regressor (SVR), Long Short Term Memory (LSTM), Gated Recurrent Network (GRU), Bidirectional-LSTM (BI-LSTM) and LSTM-Convolutional Neural Network (LSTM-CNN). These methods have been evaluated based on three performance measurements called Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R2. The evaluation of these candidate ML resulted in the LSTM-CNN model performing the best on RMSE, MAE and R2.
212

A longitudinal cohort study examining the relationship between working memory and UK primary school curricular mathematics

Pennington, Glenda January 2013 (has links)
Mathematics is an important skill that is taught to all children in the UK in a structured manner from a very early age. The purpose of this thesis was to examine how working memory (Baddeley & Hitch, 1974a; Baddeley & Hitch, 1994) and UK curricular mathematics are related, if specific components of working memory were more impactful upon performance in mathematics than others, and if we can predict mathematics outcomes using working memory measures. With reference to the influence of working memory on overall curricular mathematics performance, a cohort of 70 children from two primary schools in the North West of England was tested annually from their Reception year (mean age 5yrs 1m) at school to Year Two (mean age 6yrs 11m ). The study used a number of working memory tasks, a UK curricular mathematics test, and two Performance Measures. This allowed data to be analysed both in a cross-sectional manner and longitudinally (Chapter 5).The thesis also differentiates UK curricular mathematics into four separable “strands”, Number, Calculation, Measures, Shape and Space, and Problem Solving. These strands are described consistently throughout the UK mathematics curricular literature (DfEE, 1999; DfEE & QCA, 1999a; DfES, 2003a) and the cohort data was used to statistically analyse the relationships between working memory and each strand in turn using a correlational design in Chapters 6 to 9.Results indicated that working memory is a robust predictor of overall mathematics performance (Chapter 5), and of the Calculation Strand (Chapter 7). This finding was demonstrated in both the cross-sectional analyses and also in the longitudinal regression analyses. Of the working memory measures a distinct pattern of association was revealed. In particular the data imply that there is a strong role for the central executive at each age range, but in Year One verbal short-term memory emerges as an important predictor variable. Working memory also showed significant predictive influence over the remaining three curricular mathematics strands that were measured, particularly at the youngest age grouping, but working memory was not found to be a robust longitudinal predictor of Number, Problem Solving or Measures, Shape and Space. The overarching conclusion is that working memory, and in particular the central executive, may support the development of early curricular mathematical skills independent of the influence of age and Performance Measures. The practical and theoretical implications are considered.
213

Hybrid Analysis of Android Applications for Security Vetting

Chaulagain, Dewan 10 May 2019 (has links)
No description available.
214

ASIC implementation of LSTM neural network algorithm

Paschou, Michail January 2018 (has links)
LSTM neural networks have been used for speech recognition, image recognition and other artificial intelligence applications for many years. Most applications perform the LSTM algorithm and the required calculations on cloud computers. Off-line solutions include the use of FPGAs and GPUs but the most promising solutions include ASIC accelerators designed for this purpose only. This report presents an ASIC design capable of performing the multiple iterations of the LSTM algorithm on a unidirectional and without peepholes neural network architecture. The proposed design provides arithmetic level parallelism options as blocks are instantiated based on parameters. The internal structure of the design implements pipelined, parallel or serial solutions depending on which is optimal in every case. The implications concerning these decisions are discussed in detail in the report. The design process is described in detail and the evaluation of the design is also presented to measure accuracy and error of the design output.This thesis work resulted in a complete synthesizable ASIC design implementing an LSTM layer, a Fully Connected layer and a Softmax layer which can perform classification of data based on trained weight matrices and bias vectors. The design primarily uses 16-bit fixed point format with 5 integer and 11 fractional bits but increased precision representations are used in some blocks to reduce error output. Additionally, a verification environment has also been designed and is capable of performing simulations, evaluating the design output by comparing it with results produced from performing the same operations with 64-bit floating point precision on a SystemVerilog testbench and measuring the encountered error. The results concerning the accuracy and the design output error margin are presented in this thesis report. The design went through Logic and Physical synthesis and successfully resulted in a functional netlist for every tested configuration. Timing, area and power measurements on the generated netlists of various configurations of the design show consistency and are reported in this report. / LSTM neurala nätverk har använts för taligenkänning, bildigenkänning och andra artificiella intelligensapplikationer i många år. De flesta applikationer utför LSTM-algoritmen och de nödvändiga beräkningarna i digitala moln. Offline lösningar inkluderar användningen av FPGA och GPU men de mest lovande lösningarna inkluderar ASIC-acceleratorer utformade för endast dettaändamål. Denna rapport presenterar en ASIC-design som kan utföra multipla iterationer av LSTM-algoritmen på en enkelriktad neural nätverksarkitetur utan peepholes. Den föreslagna designed ger aritmetrisk nivå-parallellismalternativ som block som är instansierat baserat på parametrar. Designens inre konstruktion implementerar pipelinerade, parallella, eller seriella lösningar beroende på vilket anternativ som är optimalt till alla fall. Konsekvenserna för dessa beslut diskuteras i detalj i rapporten. Designprocessen beskrivs i detalj och utvärderingen av designen presenteras också för att mäta noggrannheten och felmarginal i designutgången. Resultatet av arbetet från denna rapport är en fullständig syntetiserbar ASIC design som har implementerat ett LSTM-lager, ett fullständigt anslutet lager och ett Softmax-lager som kan utföra klassificering av data baserat på tränade viktmatriser och biasvektorer. Designen använder huvudsakligen 16bitars fast flytpunktsformat med 5 heltal och 11 fraktions bitar men ökade precisionsrepresentationer används i vissa block för att minska felmarginal. Till detta har även en verifieringsmiljö utformats som kan utföra simuleringar, utvärdera designresultatet genom att jämföra det med resultatet som produceras från att utföra samma operationer med 64-bitars flytpunktsprecision på en SystemVerilog testbänk och mäta uppstådda felmarginal. Resultaten avseende noggrannheten och designutgångens felmarginal presenteras i denna rapport.Designen gick genom Logisk och Fysisk syntes och framgångsrikt resulterade i en funktionell nätlista för varje testad konfiguration. Timing, area och effektmätningar på den genererade nätlistorna av olika konfigurationer av designen visar konsistens och rapporteras i denna rapport.
215

Model Predictive Control Used for Optimal Heating in Commercial Buildings

Rubin, Fredrik January 2021 (has links)
Model Predictive Control (MPC) is an optimization method used in a wide range of applications. However, in the housing sector its use is still limited. In this project, the possibilities of using an easily scalable MPC controller to optimize the heating of a building, is examined and evaluated. It is a combination of a Long Short Term Memory (LSTM) network for understanding the dynamics of the buildning in order to predict future indoor temperatures, and the probalistic technique Simulated Annealing (SA), used for solving the control problem. As an extension, predicted energy prices per hour are added, with the goal to lower the heating costs. The model is tested on a family house with eight rooms and centrally heated using gas. The results are promising, but ambiguous. The main reason for the uncertainties are the testing environment. / Model Predictive Control (MPC) är en optimeringsmetod som används inom många olika områden. Inom bostadssektorn är dock användningen fortfarande begränsad. I det här projektet undersöks möjligheten att använda en MPC kontroller för att optimera uppvärmningen av en byggnad, och om den enkelt kan appliceras på andra byggnader. Det är en kombination av ett long Short Term Memory (LSTM) nätverk för att förstå dynamiken av byggnaden med målet att förutse framtida inomhustemperaturer, och den probabilistiska metoden Simulated Annealing (SA) som används för att lösa kontrollproblemet. Ett tillägg till modellen är inkluderandet av energipriser för varje timme, där målet istället blir att minimera uppvärmningskostnaderna. Modellen testas på ett familjehus med åtta rum som är centralt uppvärmt genom gas. Resultaten är lovande, men tvetydiga. Huvudorsaken för osäkerheterna är testmiljön.
216

Anomaly Detection for Root Cause Analysis in System Logs using Long Short-Term Memory / Anomalidetektion för Grundorsaksanalys i Loggar från Mjukvara med hjälp av Long Short-Term Memory

von Hacht, Johan January 2021 (has links)
Many software systems are under test to ensure that they function as expected. Sometimes, a test can fail, and in that case, it is essential to understand the cause of the failure. However, as systems grow larger and become more complex, this task can become non-trivial and potentially take much time. Therefore, even partially, automating the process of root cause analysis can save time for the developers involved. This thesis investigates the use of a Long Short-Term Memory (LSTM) anomaly detector in system logs for root cause analysis. The implementation is evaluated in a quantitative and a qualitative experiment. The quantitative experiment evaluates the performance of the anomaly detector in terms of precision, recall, and F1 measure. Anomaly injection is used to measure these metrics since there are no labels in the data. Additionally, the LSTM is compared with a baseline model. The qualitative experiment evaluates how effective the anomaly detector could be for root cause analysis of the test failures. This was evaluated in interviews with an expert in the software system that produced the log data that the thesis uses. The results show that the LSTM anomaly detector achieved a higher F1 measure than the proposed baseline implementation thanks to its ability to detect unusual events and events happening out of order. The qualitative results indicate that the anomaly detector could be used for root cause analysis. In many of the evaluated test failures, the expert being interviewed could deduce the cause of the failure. Even if the detector did not find the exact issue, a particular part of the software might be highlighted, meaning that it produces many anomalous log messages. With this information, the expert could contact the people responsible for that part of the application for help. In conclusion, the anomaly detector automatically collects the necessary information for the expert to perform root cause analysis. As a result, it could save the expert time to perform this task. With further improvements, it could also be possible for non-experts to utilise the anomaly detector, reducing the need for an expert. / Många mjukvarusystem testas för att försäkra att de fungerar som de ska. Ibland kan ett test misslyckas och i detta fall är det viktigt att förstå varför det gick fel. Detta kan bli problematiskt när mjukvarusystemen växer och blir mer komplexa eftersom att denna uppgift kan bli icke trivial och ta mycket tid. Om man skulle kunna automatisera felsökningsprocessen skulle det kunna spara mycket tid för de invloverade utvecklarna. Denna rapport undersöker användningen av en Long Short-Term Memory (LSTM) anomalidetektor för grundorsaksanalys i loggar. Implementationen utvärderas genom en kvantitativ och kvalitativ undersökning. Den kvantitativa undersökningen utvärderar prestandan av anomalidetektorn med precision, recall och F1 mått. Artificiellt insatta anomalier används för att kunna beräkna dessa mått eftersom att det inte finns etiketter i den använda datan. Implementationen jämförs också med en annan simpel anomalidetektor. Den kvalitativa undersökning utvärderar hur användbar anomalidetektorn är för grundorsaksanalys för misslyckade tester. Detta utvärderades genom intervjuer med en expert inom mjukvaran som producerade datan som användes in denna rapport. Resultaten visar att LSTM anomalidetektorn lyckades nå ett högre F1 mått jämfört med den simpla modellen. Detta tack vare att den kunde upptäcka ovanliga loggmeddelanden och loggmeddelanden som skedde i fel ordning. De kvalitativa resultaten pekar på att anomalidetektorn kan användas för grundorsaksanalys för misslyckade tester. I många av de misslyckade tester som utvärderades kunde experten hitta anledningen till att felet misslyckades genom det som hittades av anomalidetektorn. Även om detektorn inte hittade den exakta orsaken till att testet misslyckades så kan den belysa en vissa del av mjukvaran. Detta betyder att just den delen av mjukvaran producerad många anomalier i loggarna. Med denna information kan experten kontakta andra personer som känner till den delen av mjukvaran bättre för hjälp. Anomalidetektorn automatiskt den information som är viktig för att experten ska kunna utföra grundorsaksanalys. Tack vare detta kan experten spendera mindre tid på denna uppgift. Med vissa förbättringar skulle det också kunna vara möjligt för mindre erfarna utvecklare att använda anomalidetektorn. Detta minskar behovet för en expert.
217

Empirisk Modellering av Trafikflöden : En spatio-temporal prediktiv modellering av trafikflöden i Stockholms stad med hjälp av neurala nätverk / Empirical Modeling of Traffic Flow : A spatio-temporal prediction model of the traffic flow in Stockholm city using neural networks

Björkqvist, Niclas, Evestam, Viktor January 2024 (has links)
A better understanding of the traffic flow in a city helps to smooth transport resulting in a better street environment, affecting not only road users and people in proximity. Good predictions of the flow of traffic helps to control and further develop the road network in order to avoid congestion and unneccessary time spent while traveling. This study investigates three different machine learning models with the purpose of predicting traffic flow on different road types inurban Stockholm using loop sensor data between 2013 and 2023. The models used was Long short term memory (LSTM), Temporal convolutional network (TCN) and a hybrid model of LSTM and TCN. The results from the hybrid model indicates a slightly better mean absolute error than TCN suggesting that a hybrid model might be advantagous when predicting traffic flow using loop sensor data. LSTM struggled to capture the complexity of the data and was unable to provide a proper prediction as a result. TCN produced a mean absolute error slightly bigger than the hybrid model and was to an extent able to capture the trends of the traffic flow, but struggled with capturing the scale of the traffic flow suggesting the need for further data preprocessing. Furthermore, this study suggests that the loop sensor data was able to act as a foundation for predicting the traffic flow using machine learning methods. However, it suggest that improvements to the data itself such as incorporating more related parameters might be advantageous to further improve traffic flow prediction.
218

A naïve sampling model of intuitive confidence intervals

Hansson, Patrik January 2007 (has links)
A particular field in research on judgment and decision making (JDM) is concerned with realism of confidence in one’s knowledge. An interesting finding is the so-called format dependence effect, which implies that assessment of the same probability distribution generates different conclusions about over- or underconfidence depending on the assessment format. In particular, expressing a belief about some unknown continuous quantity (e.g., a stock value) in the form of an intuitive confidence interval is severely prone to overconfidence as compared to expressing the belief as an assessment of a probability judgment. This thesis gives a tentative account of this finding in terms of a Naïve Sampling Model, which assumes that people accurately describe their available information stored in memory, but they are naïve in the sense that they treat sample properties as proper estimators of population properties (Study 1). The effect of this naivety is directly investigated empirically in Study 2. A prediction that short-term memory is a constraining factor for sample size in judgment, suggesting that experience per se does not eliminate overconfidence is investigated and verified in Study 3. Age-related increments in overconfidence were observed with intuitive confidence interval but not for probability judgment (Study 4). This thesis suggests that no cognitive processing bias (e.g., Tversky & Kahneman, 1974) over and above naivety is needed to understand and explain the overconfidence “bias” with intuitive confidence interval and hence the format dependence effect.
219

Représentation corticale de la mémoire à court-terme tactile chez l'humain pour une stimulation de la main : étude par magnétoencéphalographie

Fortier-Gauthier, Ulysse 08 1900 (has links)
L'activité cérébrale, reliée spécifiquement à la rétention d'information en mémoire à court-terme tactile, a été investiguée à l'aide de l'enregistrement des champs magnétiques produits par l'activité neuronale générée durant la période de rétention par une tâche de mémoire tactile. Une, deux, trois ou quatre positions, sur une possibilité de huit sur les phalangines et les phalangettes, de la main gauche ou droite, lors de blocs d'essai différents, ont été stimulées simultanément. Le patron de stimulation tactile devait être retenu pendant 1800 ms avant d'être comparé avec un patron test qui était, soit identique, soit différent par une seule position. Nos analyses se sont concentrées sur les régions du cerveau qui montraient une augmentation monotone du niveau d'activité soutenu durant la période de rétention pour un nombre croissant de positions à retenir dans le patron de stimulation. Ces régions ont plus de chance de participer à la rétention active de l'information à maintenir en mémoire à court-terme tactile. Le gyrus cingulaire (BA32), le gyrus frontal supérieur droit (BA 8), le precuneus gauche (BA 7, 19), le gyrus postcentral gauche (BA 7), le gyrus precentral droit (BA 6), le gyrus frontal supérieur gauche (BA 6) et le lobule pariétal inférieur droit (BA 40) semblent tous impliqués dans un réseau mnésique qui maintient les informations sensorielles tactiles dans un système de mémoire à court-terme spécialisé pour l'information tactile. / Brain activity specifically related to the maintenance of information held in tactile short-term memory was investigated, using recordings of magnetic fields from a whole-head magnetometer. This neuronal activity was measured during the retention interval of a tactile memory task. One, two, three, or four locations on distal and intermediate phalanges, out of eight positions, were simultaneously stimulated on the left or right hand in different blocks of trials. The tactile stimulation pattern was held in memory for 1800 ms before being compared with a test pattern that was either the same or different by one location. Our analyses focused on regions in the brain that showed a monotonic increase of the sustained activity levels during the retention interval with an increasing number of stimulated locations in the to-be-remembered pattern. These regions are the most likely to participate in the active retention of the information to be held in tactile sensory memory. The right cingular gyrus (BA 32), the right superior frontal gyrus (BA 8), the left precuneus (BA 7, 19), the left postcentral gyrus (BA 7), the right precentral gyrus (BA 6), the left superior frontal gyrus (BA 6) and the right inferior parietal lobule (BA 40) all appear to be involved in a memory system that maintains tactile sensory input in a short-term memory system specialized for tactile information.
220

Working memory and reading : a developmental study

Adan, Marilyn Jean January 2016 (has links)
Models of reading comprehension using the working memory paradigm have been formulated from studies using adult readers. Although there appear to be differences in working memory skills between beginner and mature readers, and normal and reading disabled children, the exact role of working memory in reading is still unclear. This study examined the role of working memory in the development of reading in children. A study ~v Baddeley, Logie, Nimmo-Smith, and Brereton (1985) was modified for this purpose to accommodate factors relevant to reading development in children

Page generated in 0.0438 seconds