• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d’un module d’électronique de puissance «Fail-to-short» pour application haute tension / Designing a power module with failure to short circuit mode capability for high voltage applications

Dchar, Ilyas 31 May 2017 (has links)
Les convertisseurs de forte puissance sont des éléments critiques des futurs réseaux HVDC. À ce titre, leur fiabilité et leur endurance sont primordiales. La défaillance d’un composant se produit soit en circuit ouvert, ou en court-circuit. Le composant défaillant en circuit ouvert est inadmissible pour les convertisseurs utilisant une topologie de mise en série. En particulier, dans certaines applications HVDC, les modules doivent être conçus de telle sorte que lorsqu'une défaillance se produit, le module défaillant doit se comporter comme un court-circuit et supporter ainsi le courant nominal qui le traverse. Un tel comportement est appelé “défaillance en court-circuit” ou “failure-to-short-circuit”. Actuellement, tous les modules de puissance ayant un mode de défaillance en court-circuit disponibles dans le commerce utilisent des semi-conducteurs en silicium. Les potentialités des semi-conducteurs en carbure de silicium (SiC) poussent, aujourd’hui, les industriels et les chercheurs à mener des investigations pour développer des modules Fail-to-short à base des puces SiC. C’est dans ce contexte que se situe ce travail de thèse, visant à concevoir un module à base de puces SiC offrant un mode de défaillance de court-circuit. Pour cela nous présentons d’abord une étude de l’énergie de défaillance des puces SiC, afin de définir les plages d’activation du mécanisme Fail-to-short. Ensuite, nous démontrons la nécessité de remplacer les interconnexions classiques (fils de bonding) par des contacts massifs sur la puce. Enfin, une mise en œuvre est présentée au travers d’un module “demi pont” à deux transistors MOSFET. / The reliability and endurance of high power converters are paramount for future HVDC networks. Generally, module’s failure behavior can be classified as open-circuit failure and short-circuit failure. A module which fails to an open circuit is considered as fatal for applications requiring series connection. Especially, in some HVDC application, modules must be designed such that when a failure occurs, the failed module still able to carry the load current by the formation of a stable short circuit. Such operation is referred to as short circuit failure mode operation. Currently, all commercially available power modules which offer a short circuit failure mode use silicon semiconductors. The benefits of SiC semiconductors prompts today the manufacturers and researchers to carry out investigations to develop power modules with Fail-to-short-circuit capability based on SiC dies. This represents a real challenge to replace silicon power module for high voltage applications in the future. The work presented in this thesis aims to design a SiC power module with failure to short-circuit failure mode capability. The first challenge of the research work is to define the energy leading to the failure of the SiC dies in order to define the activation range of the Fail-to-short mechanism. Then, we demonstrate the need of replacing the conventional interconnections (wire bonds) by massive contacts. Finally, an implementation is presented through a "half bridge" module with two MOSFETs.
2

Terminaisons verticales de jonction remplies avec des couches diélectriques isolantes pour des application haute tension utilisant des composants grand-gap de forte puissance / Vertical termination filled with adequate dielectric on wide band-gap HVDC power devices

Bui, Thi Thanh Huyen 12 July 2018 (has links)
Le développement de l’énergie renouvelable loin des zones urbaines demande le transport d'une grande quantité d’énergie sur de longues distances. Le transport d’électricité en courant continu haute tension (HVDC) présente beaucoup d’avantages par rapport à celui en courant alternatif. Dans ce contexte il est nécessaire de développer des convertisseurs de puissance constitués par des composants électroniques très haute tension, 10 à 30 kV. Si les composants en silicium ne peuvent pas atteindre ces objectifs, le carbure de silicium (SiC) se positionne comme un matériau semiconducteur alternatif prometteur. Pour supporter des tensions élevées, une région de "drift", relativement large et peu dopée constitue le cœur du composant de puissance. En pratique l’obtention d’une tension de blocage effective dépend de plusieurs facteurs et surtout de la conception d'une terminaison de jonction adaptée. Cette thèse présente une méthode pour améliorer la tenue en tension des composants en SiC basée sur l’utilisation des terminaisons de jonctions : Deep Trench Termination. Cette méthode utilise une tranchée gravée profonde en périphérie du composant, remplie avec un matériau diélectrique pour supporter l'étalement des lignes équipotentielles. La conception de la diode avec cette terminaison a été faite par simulation TCAD, avec deux niveaux de tension 3 et 20 kV. Les travaux ont pris en compte les caractéristiques du matériau, les charges à l’interface de la tranchée et les limites technologiques pour la fabrication. Ce travail a abouti sur la fabrication de démonstrateurs et leur caractérisation pour valider notre conception. Lors de la réalisation de ces structures, la gravure plasma du SiC a été optimisée dans un bâti ICP de manière à obtenir une vitesse de gravure élevée et en conservant une qualité électronique de l'état des surfaces gravées. Cette qualité est confirmée par les résultats de caractérisation obtenus avec des tenues en tension proches de celle idéale. / The development of renewable energy away from urban areas requires the transmission of a large amount of energy over long distances. High Voltage Direct Current (HVDC) power transmission has many advantages over AC power transmission. In this context, it is necessary to develop power converters based on high voltage power electronic components, 10 to 30 kV. If silicon components cannot achieve these objectives, silicon carbide (SiC) is positioned as a promising alternative semiconductor material. To support high voltages, a drift region, relatively wide and lightly doped is the heart of the power component. In practice obtaining an effective blocking voltage depends on several factors and especially the design of a suitable junction termination. This thesis presents a method to improve the voltage withstand of SiC components based on the use of junction terminations: Deep Trench Termination. This method uses a trench deep etching around the periphery of the component, filled with a dielectric material to support the spreading of the equipotential lines. The design of the diode with this termination was done by TCAD simulation, with two voltage levels 3 and 20 kV. The work took into account the characteristics of the material, the interface charge of the trench and the technological limits for the fabrication. This work resulted in the fabrication of demonstrators and their characterization to validate the design. During the production of these structures, plasma etching of SiC has been optimized in an ICP reactor so as to obtain a high etching rate and maintaining an electronic quality of the state of etched surfaces. This quality is confirmed by the results of characterization obtained with blocking voltage close to the ideal one.

Page generated in 0.0397 seconds