• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intégration des fonctions de protection avec les dispositifs IGBT

Legal, Julie 20 April 2010 (has links) (PDF)
La fiabilité et la disponibilité des systèmes de gestion de l'énergie sont les conditions de base pour la généralisation de solutions électriques dans de nombreuses applications. Les dispositifs de puissance doivent être performants non seulement en régime normal, mais aussi en régimes extrêmes, par exemple lors des courts-circuits. Pour cela, les interrupteurs de puissance sont associés de façon discrète à des systèmes de détection et de protection. Une solution pour améliorer la fiabilité des dispositifs consiste à intégrer monolithiquement, au sein d'une même puce, l'interrupteur et les fonctions de détection et de protection. Ces dispositifs intégrés exploitent les interactions électriques qui apparaissent dans la puce pour détecter la défaillance et ainsi la stopper. L'interrupteur de puissance est ainsi protégé et se remet en conduction une fois la défaillance corrigée. Les composants de puissance seront ainsi capables de se protéger lors d'une défaillance. L'objectif de cette thèse est de proposer des solutions d'intégration de fonctions de protection et de diagnostic rapprochées avec les dispositifs IGBT afin d'augmenter la fiabilité et la disponibilité des systèmes de puissance. Les fonctions de protection sur lesquelles nous nous sommes focalisés sont le miroir de courant ("Sense") et le capteur d'anode ("Capteur de Tension d'Anode") pour détecter les courts-circuits. Ces deux capteurs ont été étudiés à l'aide de simulation 2D puis réalisés technologiquement. Un circuit de détection et de protection des IGBT contre les courts-circuits, comprenant le capteur de tension d'anode intégré monolithiquement, est proposé et simulé. Les tests électriques des capteurs en mode statique permettent de mieux comprendre leur comportement. Enfin, l'interrupteur IGBT associé à ses fonctions de détection et de protection est testé de manière discrète dans un circuit de commutation en condition de court-circuit afin de valider le fonctionnement.
2

Temperaturbestimmung an IGBTs und Dioden unter hohen Stoßstrombelastungen

Simon, Tom 16 April 2015 (has links)
Diese Arbeit beschäftigt sich mit drei verschiedenen Temperaturmessmethoden VCE, VGTH sowie über die Messung der thermsichen Impedanz mit 10ms langen Lastimpulsen und vergleicht die Messergebnisse mit zwei Simulatoren. Dabei wird ein Schaltungs- sowie ein Halbleitersimulator verwendet und das bisherige Simulationsmodell angepasst.:Aufgabenstellung Inhaltsverzeichnis Nomenklatur Einleitung 1. Grundlagen 1.1. Halbleitermaterialien 1.2. Dioden Grundlagen 1.2.1. pn-Übergang 1.2.2. Temperaturabhängigkeit der Diffusionsspannung des pn-Übergangs 1.2.3. Diodenstrukturen 1.3. IGBT Grundlagen 1.3.1. Funktionsweise und ESB 1.3.2. Statisches Verhalten des IGBTs 1.4. Messtechnische Bestimmung der virtuellen Sperrschichttemperatur 1.4.1. VCE(T)- und VGth(T)-Methode 1.4.2. Temperaturreferenzmessung – Kalibrierkennlinie 1.4.3. Wurzel(t)-Methode 1.5. Simulation der virtuellen Sperrschichttemperatur mittels thermischer Ersatzschaltbilder 1.5.1. Thermische Kenngrößen Rth, Cth 1.5.2. Transiente thermische Impedanz Zth 1.5.3. Ersatzschaltbild – Cauer-Netzwerk 1.6. Simulation der virtuellen Sperrschichttemperatur mittels Halbleitersimulator 1.7. Stoßstromereignisse 2. Vormessungen 2.1. Prüflinge 2.2. Messung der Sperrfähigkeit 2.2.1. Testaufbau – Schaltung 2.2.2. Testergebnisse 2.3. Messung des Ausgangskennlinienfeldes/ Durchlassmessungen 2.3.1. Testaufbau – Schaltung 2.3.2. Testergebnisse 2.4. Messung der Transferkennlinie 2.4.1. Testaufbau – Schaltung 2.4.2. Testergebnisse 2.4.3. Bestimmung des “pinch-off”-Bereiches 2.5. Aufnahme der Kalibrierkennlinien 2.5.1. Testaufbau – Schaltung 2.5.2. Testergebnisse 3. Temperaturbestimmung mittels thermischer Impedanz Zth 3.1. Testaufbau – Schaltung 3.2. Testergebnisse 4. Temperaturbestimmung am Stoßstrommessplatz 4.1. Ermittlung der Halbleitertemperatur nach einem Stoßstromereignis 4.1.1. Anpassung des Stoßstrommessplatzes 4.1.2. Pulsmuster VCE(T)-, VGth(T)-Messung 4.1.3. Testergebnisse 4.2. Ermittlung des Halbleitertemperaturverlaufes während des Stoßstromereignisses 4.2.1. Testaufbau - Schaltung 4.2.2. Pulsmuster VCE(T)-, VGth(T)-Messung 4.2.3. Testergebnisse 5. Simulation der Temperaturverläufe 5.1. Temperatursimulation mittels Halbleitersimulator 5.2. Temperatursimulation mittels Cauer-Netzwerk 5.3. Angepasste Temperatursimulation mittels Cauer-Netzwerk 6. Zusammenfassung und Ausblick Anhang Literaturverzeichnis Selbstständigkeitserklärung Danksagung
3

Terminaisons verticales de jonction remplies avec des couches diélectriques isolantes pour des application haute tension utilisant des composants grand-gap de forte puissance / Vertical termination filled with adequate dielectric on wide band-gap HVDC power devices

Bui, Thi Thanh Huyen 12 July 2018 (has links)
Le développement de l’énergie renouvelable loin des zones urbaines demande le transport d'une grande quantité d’énergie sur de longues distances. Le transport d’électricité en courant continu haute tension (HVDC) présente beaucoup d’avantages par rapport à celui en courant alternatif. Dans ce contexte il est nécessaire de développer des convertisseurs de puissance constitués par des composants électroniques très haute tension, 10 à 30 kV. Si les composants en silicium ne peuvent pas atteindre ces objectifs, le carbure de silicium (SiC) se positionne comme un matériau semiconducteur alternatif prometteur. Pour supporter des tensions élevées, une région de "drift", relativement large et peu dopée constitue le cœur du composant de puissance. En pratique l’obtention d’une tension de blocage effective dépend de plusieurs facteurs et surtout de la conception d'une terminaison de jonction adaptée. Cette thèse présente une méthode pour améliorer la tenue en tension des composants en SiC basée sur l’utilisation des terminaisons de jonctions : Deep Trench Termination. Cette méthode utilise une tranchée gravée profonde en périphérie du composant, remplie avec un matériau diélectrique pour supporter l'étalement des lignes équipotentielles. La conception de la diode avec cette terminaison a été faite par simulation TCAD, avec deux niveaux de tension 3 et 20 kV. Les travaux ont pris en compte les caractéristiques du matériau, les charges à l’interface de la tranchée et les limites technologiques pour la fabrication. Ce travail a abouti sur la fabrication de démonstrateurs et leur caractérisation pour valider notre conception. Lors de la réalisation de ces structures, la gravure plasma du SiC a été optimisée dans un bâti ICP de manière à obtenir une vitesse de gravure élevée et en conservant une qualité électronique de l'état des surfaces gravées. Cette qualité est confirmée par les résultats de caractérisation obtenus avec des tenues en tension proches de celle idéale. / The development of renewable energy away from urban areas requires the transmission of a large amount of energy over long distances. High Voltage Direct Current (HVDC) power transmission has many advantages over AC power transmission. In this context, it is necessary to develop power converters based on high voltage power electronic components, 10 to 30 kV. If silicon components cannot achieve these objectives, silicon carbide (SiC) is positioned as a promising alternative semiconductor material. To support high voltages, a drift region, relatively wide and lightly doped is the heart of the power component. In practice obtaining an effective blocking voltage depends on several factors and especially the design of a suitable junction termination. This thesis presents a method to improve the voltage withstand of SiC components based on the use of junction terminations: Deep Trench Termination. This method uses a trench deep etching around the periphery of the component, filled with a dielectric material to support the spreading of the equipotential lines. The design of the diode with this termination was done by TCAD simulation, with two voltage levels 3 and 20 kV. The work took into account the characteristics of the material, the interface charge of the trench and the technological limits for the fabrication. This work resulted in the fabrication of demonstrators and their characterization to validate the design. During the production of these structures, plasma etching of SiC has been optimized in an ICP reactor so as to obtain a high etching rate and maintaining an electronic quality of the state of etched surfaces. This quality is confirmed by the results of characterization obtained with blocking voltage close to the ideal one.

Page generated in 0.0982 seconds