• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power efficient  Transmit/Receive (T/R) Elements for Integrated mm-Wave Phased Arrays

Afroz, Sadia 01 August 2017 (has links)
Thanks to a small wavelength (large bandwidth) combined with a low loss transmission window around 94 GHz and 120 GHz, the 75-120 GHz frequency band in millimeter wave (mm-wave) provides a promising opportunity for high data rate long range wireless communications and high-resolution imaging systems. Large-scale phased arrays have been exploited in such application for their beam forming and null steering capabilities, resulting in high directivity and improved SNR. But growing DC power consumption (Pdiss) in such large scale arrays has become an on-going concern along with noise, linearity and phase resolution trade-offs in current phased array architectures. To address these issues, we propose a power efficient phase shifter (PS) architecture based on quadrature hybrid coupler, which leverages the benefits of conventional active and passive PSs at mm-wave. The phase shifter has low loss, resulting in low power dissipation and the power domain phase interpolation by the quadrature hybrid gives low phase error and high linearity. We design W-band (90-100 GHz) phased array transmit and receive (T/R) modules in 130 nm SiGe BiCMOS technology based on the proposed PS and our measurements show high power efficiency with the lowest power consumption at W-band to our knowledge (18mW and 26mW power dissipations at receiver (Rx) and transmitter (Tx) front-ends respectively). Rx shows 23 to 25 dB peak gain, 6 to 9.3 dB NF and Tx can deliver upto 7 dBm output power with 18% power efficiency. Moreover, our PS can achieve 5-bit phase resolution with <2 degrees RMS phase error and provides 0 dBm saturated output power at 94 GHz. The phase shifter (PS) is also scalable beyond W-band without significant loss. We demonstrate this with a 120 GHz two channel phased array receiver (Rx), where a single channel shows 15.6 dB peak gain with Pdiss=53 mW which shows one of the highest gain efficiency (gain/Pdiss) among D-band phased arrays. We can further reduce the power consumption by leveraging the bidirectional signal processing at the phased array front-end. To achieve this, we designed a W-band bidirectional variable gain amplifier with gain variation ranging from 6 to -1 dB at 94 GHz which can be used along with bidirectional PS. The amplifier will replace the lossy SPDT switch in the conventional bidirectional approach, reducing the overall power consumption. / Ph. D.
2

Design methodology for millimeter wave integrated circuits : application to SiGe BiCMOS LNAs

Severino, Raffaele Roberto 24 June 2011 (has links)
Grace aux récents développements des technologies d’intégration, il est aujourd’hui possible d’envisager la réalisation de circuits et systèmes intégrés sur Silicium fonctionnant à des fréquences auparavant inatteignables. Par conséquence, depuis quelques années, on assiste à la naissance de nouvelles applications en bande millimétrique, comme la communication sans fil à haut-débit à 60GHz, les radars automobiles à 76-77 et 79-82GHz, et l’imagerie millimétrique à 94GHz.Cette thèse vise, en premier lieu, à la définition d’une méthodologie de conception des circuits intégrés en bande millimétrique. Elle est par la suite validée au travers de son application à la conception des amplificateurs faible-bruit en technologie BiCMOS SiGe. Dans ce contexte, une attention particulière a été portée au développement d’une stratégie de conception et de modélisation des inductances localisées. Plusieurs exemples d’amplificateurs faible-bruit ont été réalisés, à un ou deux étages, employant des composants inductifs localisés ou distribués, à 60, 80 et 94 GHz. Tous ces circuits présentent des caractéristiques au niveau de l’état de l’art dans le domaine, ainsi en confirmant l’exactitude de la méthodologie de conception et son efficacité sur toute la planche de fréquence considérée. En outre, la réalisation d’un récepteur intégré pour applications automobiles à 80GHz est aussi décrite comme exemple d’une possible application système, ainsi que la co-intégration d’un amplificateur faible-bruit avec une antenne patch millimétrique intégrée sur Silicium. / The interest towards millimeter waves has rapidly grown up during the last few years, leading to the development of a large number of potential applications in the millimeter wave band, such as WPANs and high data rate wireless communications at 60GHz, short and long range radar at 77-79GHz, and imaging systems at 94GHz.Furthermore, the high frequency performances of silicon active devices (bipolar and CMOS) have dramatically increased featuring both fT and fmax close or even higher than 200GHz. As a consequence, modern silicon technologies can now address the demand of low-cost and high-volume production of systems and circuits operating within the millimeter wave range. Nevertheless, millimeter wave design still requires special techniques and methodologies to overcome a large number of constraints which appear along with the augmentation of the operative frequency.The aim of this thesis is to define a design methodology for integrated circuits operating at millimeter wave and to provide an experimental validation of the methodology, as exhaustive as possible, focusing on the design of low noise amplifiers (LNAs) as a case of study.Several examples of LNAs, operating at 60, 80, and 94 GHz, have been realized. All the tested circuits exhibit performances in the state of art. In particular, a good agreement between measured data and post-layout simulations has been repeatedly observed, demonstrating the exactitude of the proposed design methodology and its reliability over the entire millimeter wave spectrum. A particular attention has been addressed to the implementation of inductors as lumped devices and – in order to evaluate the benefits of the lumped design – two versions of a single-stage 80GHz LNA have been realized using, respectively, distributed transmission lines and lumped inductors. The direct comparison of these circuits has proved that the two design approaches have the same potentialities. As a matter of fact, design based on lumped inductors instead of distributed elements is to be preferred, since it has the valuable advantage of a significant reduction of the circuit dimensions.Finally, the design of an 80GHz front-end and the co-integration of a LNA with an integrated antenna are also considered, opening the way to the implementation a fully integrated receiver.
3

A 4 - 32 GHz SiGe Multi-Octave Power Amplifier with 20 dBm Peak Power, 18.6 dB Peak Gain and 156% Power Fractional Bandwidth

Thayyil, Manu Viswambharan, Li, Songhui, Joram, Niko, Ellinger, Frank 11 November 2021 (has links)
This letter presents the design and characterization results of a multi-octave power amplifier fabricated in a 0.13μm SiGe-BiCMOS technology. The single stage power amplifier is implemented as the stack of a cascode amplifier combining broadband input matching network with resistive feedback, and a common-base amplifier with base capacitive feedback. Measurement results show that the design delivers a peak saturated output power level of 20.2 dBm, with output 1 dB compression at 19.4 dBm. The measured 3 dB power bandwidth is from 4 GHz to 32 GHz, covering three octaves. The corresponding power fractional bandwidth is 156 %. The measured peak power added efficiency is 20.6 %, and peak small signal gain is 18.6 dB. The fabricated integrated circuit occupies an area of 0.71mm2. To compare state-of-the-art multi-octave power amplifiers, the power amplifier figure of merit defined by the international technology roadmap for semiconductors is modified to include power fractional bandwidth and area. To the knowledge of the authors, the presented design achieves the highest figure of merit among multi-octave power amplifiers in a silicon based integrated circuit technology reported in literature.
4

Analysis and Design of a Sub-THz Ultra-Wideband Phased-Array Transmitter

Steinweg, Luca 31 July 2023 (has links)
This thesis investigates circuits and systems for broadband high datarate transmitter systems in the millimeter-wave (mm-wave) spectrum. During the course of this dissertation, the design process and characterization of a power efficient and wideband binary phase-shift keying (BPSK) transmitter integrated circuit (IC) with local oscillator (LO) frequency multiplication and 360° phase control for beam steering is studied. All required circuit blocks are designed based on the theoretical analysis of the underlying principles, optimized, fabricated and characterized in the research laboratory targeting low power consumption, high efficiency and broadband operation. The phase-controlled push-push (PCPP) architecture enabling frequency multiplication by four in a single stage is analytically studied and characterized finding an optimum between output power and second harmonic suppression depending on the input amplitude. A PCPP based LO chain is designed. A circuit is fabricated establishing the feasibility of this architecture for operation at more than 200 GHz. Building on this, a second circuit is designed, which produces among the highest saturated output powers at 2 dBm. At less than 100 mW of direct current (DC) power consumption, this results in a power-added efficiency (PAE) of 1.6 % improving the state of the art by almost 30 %. Phase-delayed and time-delayed approaches to beam steering are analyzed, identifying and discussing design challenges like area consumption, signal attenuation and beam squint. A 60 GHz active vector-sum phase-shifter with high gain of 11.3 dB and output power of 5 dBm, improving the PAE of the state of the art by a factor of 30 achieving 6.29 %, is designed. The high gain is possible due to an optimization of the orthogonal signal creation stage enabled by studying and comparing different architectures leading to a trade off of lower signal attenuation for higher area consumption in the chosen electromagnetic coupler. By combining this with a frequency quadrupler, a phase steering enabled LO chain for operation at 220 GHz is created and characterized, confirming the preceding analysis of the phase-frequency relation during multiplication. It achieves a power gain of 21 dB, outperforming comparable designs by 25 dB. This allows the combination of phase control, frequency multiplication and pre-amplification. The radio frequency (RF) efficiency is increased 40-fold to 0.99 %, with a total power consumption of 105 mW. Motivated by the distorting effect of beam squint in phase-delayed broadband array systems, a novel analog hybrid beam steering architecture is devised, combining phase-delayed and time-delayed steering with the goal of reducing the beam squint of phase-delayed systems and large area consumption of time-delayed circuits. An analytical design procedure is presented leading to the research finding of a beam squint reduction potential of more than 83 % in an ideal system. Here, the increase in area consumption is outweighed by the reduction in beam squint. An IC with a low power consumption of 4.3 mW has been fabricated and characterized featuring the first time delay circuit operating at above 200 GHz. By producing most of the beam direction by means of time delay the beam squinting can be reduced by more than 75 % in measurements while the subsequent phase shifter ensures continuous beam direction control. Together, the required silicon area can be reduced to 43 % compared to timedelayed systems in the same frequency range. Based on studies of the optimum signal feeding and input matching of a Gilbert cell, an ultra-wideband, low-power mixer was designed. A bandwidth of more than 100 GHz was achieved exceeding the state of the art by 23 %. With a conversion gain of –13 dB, this enables datarates of more than 100 Gbps in BPSK operation. The findings are consolidated in an integrated transmitter operating around 246 GHz doubling the highest published measured datarates of transmitters with LO chain and power amplifier in BPSK operation to 56 Gbps. The resulting transmitter efficiency of 7.4 pJ/bit improves the state of the art by 70 % and 50 % over BPSK and quadrature phaseshift keying (QPSK) systems, respectively. Together, the results of this work form the basis for low-power and efficient next-generation wireless applications operating at many times the datarates available today.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 241 / Diese Dissertation untersucht Schaltungen und Systeme für breitbandige Transmittersysteme mit hoher Datenrate im Millimeterwellen (mm-wave) Spektrum. Im Rahmen dieser Arbeit werden der Entwurfsprozess und die Charakterisierung eines leistungseffizienten und breitbandigen integrierten Senders basierend auf binärer Phasenumtastung (BPSK) mit Frequenzvervielfachung des Lokaloszillatorsignals und 360°-Phasenkontrolle zur Strahlsteuerung untersucht. Alle erforderlichen Schaltungsblöcke werden auf Grundlage von theoretischen Analysen der zugrundeliegenden Prinzipien entworfen, optimiert, hergestellt und im Forschungslabor charakterisiert, mit den Zielen einer niedrigen Leistungsaufnahme, eines hohen Wirkungsgrades und einer möglichst großen Bandbreite. Die phasengesteuerte Push-Push (PCPP)-Architektur, welche eine Frequenzvervierfachung in einer einzigen Stufe ermöglicht, wird analytisch untersucht und charakterisiert. Dabei wird ein Optimum zwischen Ausgangsleistung und Unterdrückung der zweiten Harmonischen des Eingangssignals in Abhängigkeit von der Eingangsamplitude gefunden. Es wird eine LO-Kette auf PCPP-Basis entworfen. Eine Schaltung wird präsentiert, die die Machbarkeit dieser Architektur für den Betrieb bei mehr als 200 GHz nachweist. Darauf aufbauend wird eine zweite Schaltung entworfen, die mit 2 dBm eine der höchsten publizierten gesättigten Ausgangsleistungen erzeugt. Mit einer Leistungsaufnahme von weniger als 100mW ergibt sich ein Leistungswirkungsgrad (PAE) von 1.6 %, was den Stand der Technik um fast 30 % verbessert. Es werden phasenverzögerte und zeitverzögerte Ansätze zur Steuerung der Strahlrichtung analysiert, wobei Entwicklungsherausforderungen wie Flächenverbrauch, Signaldämpfung und Strahlschielen identifiziert und diskutiert werden. Ein aktiver Vektorsummen-Phasenschieber mit hoher Verstärkung von 11.3 dB und einer Ausgangsleistung von 5 dBm, der mit einer PAE von 6.29 % den Stand der Technik um den Faktor 30 verbessert, wird entworfen. Die hohe Verstärkung ist zum Teil auf eine Optimierung der orthogonalen Signalerzeugungsstufe zurückzuführen, die durch die Untersuchung und den Vergleich verschiedener Architekturen ermöglicht wird. Bei der Entscheidung für einen elektromagnetischen Koppler rechtfertigt die geringere Signaldämpfung einen höheren Flächenverbrauch. Durch die Kombination mit einem Frequenzvervierfacher wird eine LO-Kette mit Phasensteuerung für den Betrieb bei 220 GHz geschaffen und charakterisiert, was die vorangegangene Analyse der Phasen-FrequenzBeziehung während der Multiplikation bestätigt. Sie erreicht einen Leistungsgewinn von 21 dB und übertrifft damit vergleichbare Designs um 25dB. Dies ermöglicht die Kombination von Phasensteuerung, Frequenzvervielfachung und Vorverstärkung. Der HochfrequenzWirkungsgrad wird um das 40-fache auf 0.99 % bei einer Gesamtleistungsaufnahme von 105 mW gesteigert. Motiviert durch den verzerrenden Effekt des Strahlenschielens in phasengesteuerten Breitbandarraysystemen, wird eine neuartige analoge hybride Strahlsteuerungsarchitektur untersucht, die phasenverzögerte und zeitverzögerte Steuerung kombiniert. Damit wird sowohl das Strahlenschielen phasenverzögerter Systeme als auch der große Flächenverbrauch zeitverzögerter Schaltungen reduziert. Es wird ein analytisches Entwurfsverfahren vorgestellt, das zu dem Forschungsergebnis führt, dass in einem idealen System ein Potenzial zur Reduktion des Strahlenschielens von mehr als 83 % besteht. Dabei wird die Zunahme des Flächenverbrauchs durch die Verringerung des Strahlenschielens aufgewogen. Es wird ein IC mit einer geringen Leistungsaufnahme von 4.3mW hergestellt und charakterisiert. Dabei wird die erste Zeitverzögerungsschaltung entworfen, die bei über 200 GHz arbeitet. Durch die Erzeugung eines Großteils der Strahlrichtung mittels Zeitverzögerung kann das Schielen des Strahls bei Messungen um mehr als 75% reduziert werden, während der nachfolgende Phasenschieber eine kontinuierliche Steuerung der Strahlrichtung gewährleistet. Insgesamt kann die benötigte Siliziumfläche im Vergleich zu zeitverzögerten Systemen im gleichen Frequenzbereich auf 43 % reduziert werden. Auf der Grundlage von Studien zur optimalen Signaleinspeisung und Eingangsanpassung einer Gilbert-Zelle wird ein Ultrabreitband-Mischer mit geringem Stromverbrauch entworfen. Dieser erreicht eine Ausgangsbandbreite von mehr als 100 GHz, die den Stand der Technik um 23% übertrifft. Bei einer Wandlungsverstärkung von –13dB ermöglicht dies Datenraten von mehr als 100 Gbps im BPSK-Betrieb. Die Erkenntnisse werden in einem integrierten, breitbandigen Sender konsolidiert, der um 246 GHz arbeitet und die höchsten veröffentlichten gemessenen Datenraten für Sender mit LO-Signalkette und Leistungsverstärker im BPSK-Betrieb auf 56 Gbps verdoppelt. Die daraus resultierende Transmitter-Effizienz von 7.4 pJ/bit verbessert den Stand der Technik um 70 % bzw. 50 % gegenüber BPSKund Quadratur Phasenumtastung (QPSK)-Systemen. Zusammen bilden die Ergebnisse dieser Arbeit die Grundlage für stromsparende, effiziente, mobile Funkanwendungen der nächsten Generation mit einem Vielfachen der heute verfügbaren Datenraten.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 241
5

Design and Analysis of Low-power Millimeter-Wave SiGe BiCMOS Circuits with Application to Network Measurement Systems

Zhang, Yaxin 20 June 2022 (has links)
Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications. Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies: • Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz). • Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation. • Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques. • A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed. • A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc. • For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc. • An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain. • All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements. • Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure. • The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Technology 7 2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12 2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Low-power Low-noise Amplifiers 25 3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27 3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41 3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48 3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55 3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60 3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Low-power Down-conversion Mixers 73 4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77 4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Low-power Multipliers 87 5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89 5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93 5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Low-power Receivers 101 6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104 6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111 6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116 6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Conclusions 133 7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Bibliography 135 List of Figures 149 List of Tables 157 A Derivation of the Gm 159 A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B Derivation of Yin in the stability analysis 163 C Derivation of Zin and Zout 165 C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D Derivation of the cascaded oP1dB 169 E Table of element values for the designed circuits 171
6

Coaxial Cable Equalization Techniques at 50-110 Gbps

Balteanu, Andreea 21 July 2010 (has links)
Next generation communication systems are reaching 110Gbps rates. At these frequencies, the skin effect and dielectric loss of copper cables cause inter-symbol interference (ISI) and frequency dependent loss, severely limiting the channel bandwidth. In this thesis, different methods for alleviating ISI are explored. The design of the critical blocks of an adaptive channel equalizer with up to two times oversampling are presented. The circuits were fabricated in a 0.13μm SiGe BiCMOS technology. The linear, adaptive equalizer operates up to 70Gbps and its measured S-parameters exhibit a single-ended peak gain of 12.2dB at 52GHz, allowing for 31dB of peaking between DC and 52GHz. Equalization is demonstrated experimentally at 59Gbps for a cable loss of 17.9dB. These results make it the fastest receive equalizer published to date. A retiming flip-flop operating between 72 and 118 GHz, the highest reported in silicon, is also designed and characterized, showing less than 500-fs jitter.
7

Coaxial Cable Equalization Techniques at 50-110 Gbps

Balteanu, Andreea 21 July 2010 (has links)
Next generation communication systems are reaching 110Gbps rates. At these frequencies, the skin effect and dielectric loss of copper cables cause inter-symbol interference (ISI) and frequency dependent loss, severely limiting the channel bandwidth. In this thesis, different methods for alleviating ISI are explored. The design of the critical blocks of an adaptive channel equalizer with up to two times oversampling are presented. The circuits were fabricated in a 0.13μm SiGe BiCMOS technology. The linear, adaptive equalizer operates up to 70Gbps and its measured S-parameters exhibit a single-ended peak gain of 12.2dB at 52GHz, allowing for 31dB of peaking between DC and 52GHz. Equalization is demonstrated experimentally at 59Gbps for a cable loss of 17.9dB. These results make it the fastest receive equalizer published to date. A retiming flip-flop operating between 72 and 118 GHz, the highest reported in silicon, is also designed and characterized, showing less than 500-fs jitter.
8

A Novel Variable Inductor-Based VCO Design with 17% Frequency Tuning Range for IEEE 802.11AD Applications

Meng, YIN FEI 23 January 2014 (has links)
This thesis focuses on the design and analysis of a novel variable inductor (VID) based VCO solution to the frequency tuning range (TR) limitation of the IEEE 802.11ad compliant radio systems. The IEEE 802.11ad standard has drawn strong attention from the industry as the next generation affordable multi-gigabit speed wireless communication standard. Prepared for the global market, IEEE 802.11ad compliant systems are required to cover a broad 8 GHz TR centered on 60 GHz. This wide TR at V band imposes significant challenge to the VCO design in radio transceivers, and makes the TR of the integrated VCO a major bottleneck to the successful commercialization of many IEEE 802.11ad compliant radio systems today. As an effort to solve the current TR problem for the IEEE 802.11ad compliant radio systems, 2 VCOs designs based on this novel VID-based solution and a conventional Colpitts-Clapp VCO design are presented in this thesis report. The novel VCOs integrate a VID into the differential Colpitts configuration to create a feasible solution to the aforementioned TR problem. The VID in the VCO tank eliminates the base node varactors and their fixed parasitic capacitance that degrades TR in conventional VCO designs, while the differential Colpitts configuration provides advantageous performance at mm-wave frequencies and high output power for real-world applications. Also, a fundamental 30 GHz Colpitts-Clapp VCO was developed in conjunction with the other 2 VCOs for comparison purposes. One of the 2 VID-based VCO designs is a fundamental 30 GHz VID-based Colpitts VCO that covers 17% TR for proof of concept to the novel topology. Another is an IEEE 802.11ad compliant 60 GHz VCO chain consists of the 30 GHz VID-based Colpitts VCO and a frequency doubler covering 17% TR with 3 dBm output power and -115.7 dBc/Hz phase noise at 10 MHz offset. The conventional Colpitts-Clapp VCO is used to compare with the other 2 VID-based VCOs. As the measurement results indicate, this VID-based VCO topology provides a viable solution to overcome the TR bottleneck in the current IEEE 802.11ad compliant VCO development. All 3 VCOs are fabricated using a 130 nm SiGe BiCMOS process. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2014-01-23 13:40:31.258
9

A K-band SiGe Super-Regenerative Amplifier for FMCW Radar Active Reflector Applications

Thayyil, Manu Viswambharan, Li, Songhui, Joram, Niko, Ellinger, Frank 22 August 2019 (has links)
A K-band integrated super-regenerative amplifier (SRA) in a 130nm SiGe BiCMOS technology is designed and characterized. The circuit is based on a novel stacked transistor differential cross-coupled oscillator topology, with a controllable tail current for quenching the oscillations. The fabricated integrated circuit (IC) occupies an area of 0.63mm2, and operates at the free-running center frequency of 25.3 GHz. Characterization results show circuit operation from a minimum input power level required for a phase coherent output as −110 dBm, and the input power level corresponding to the linear to logarithmic mode transition of −85 dBm, the lowest reported for K-band integrated logarithmic mode SRAs to date to the knowledge of the authors. The measured output power is 7.8dBm into a 100 differential load. The power consumption of the circuit is 110mW with no quench signal applied, and 38mW with 30 % duty cycle quenching. The quench waveform designed for the reported measurement result is also discussed.
10

Silicon-germanium BiCMOS and silicon-on-insulator CMOS analog circuits for extreme environment applications

England, Troy Daniel 22 May 2014 (has links)
Extreme environments pose major obstacles for electronics in the form of extremely wide temperature ranges and hazardous radiation. The most common mitigation procedures involve extensive shielding and temperature control or complete displacement from the environment with high costs in weight, power, volume, and performance. There has been a shift away from these solutions and towards distributed, in-environment electronic systems. However, for this methodology to be viable, the requirements of heavy radiation shielding and temperature control have to be lessened or eliminated. This work gained new understanding of the best practices in analog circuit design for extreme environments. Major accomplishments included the over-temperature -180 C to +120 C and radiation validation of the SiGe Remote Electronics Unit, a first of its kind, 16 channel, sensor interface for unshielded operation in the Lunar environment, the design of two wide-temperature (-180 C to +120 C), total-ionizing-dose hardened, wireline transceivers for the Lunar environment, the low-frequency-noise characterization of a second-generation BiCMOS process from 300 K down to 90 K, the explanation of the physical mechanisms behind the single-event transient response of cascode structures in a 45 nm, SOI, radio-frequency, CMOS technology, the analysis of the single-event transient response of differential structures in a 32 nm, SOI, RF, CMOS technology, and the prediction of scaling trends of single-event effects in SOI CMOS technologies.

Page generated in 0.0318 seconds