• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Investigation of Strakes and Strakelets on a Missile at High Angles of Attack

Kistan, Prevani 28 February 2007 (has links)
Student Number : 9803192Y - MSc(Eng) Dissertation - School of Mechanical, Industrial and Aeronautical Engineering - Faculty of Engineering and the Built Environment / A computational °uid dynamics (CFD) study was carried out to improve the aero- dynamic performance of an agile high angle of attack missile. The normal force generated by the missile strakes had to be increased at the low angles of attack and the large side forces, experienced at high angles of attack due to the formation of steady asymmetric vortices had to be eliminated using strakelets on the missile nose. The ¯rst objective was achieved by increasing the missile strake span from 0:06D to 0:13D. The larger strake span increased the e®ective diameter of the missile body and prevented °ow reattachment to the body, a problem that was experienced when the strake span was 0:06D. Due to °ow separating further away from the body, strong vortices formed on the missile strakes, resulting in an increase in the normal force generated by the missile strakes at low angles of attack. The second objective was two-fold. Prior to analysing the e®ect of the strakelets on a steady asymmetric °ow¯eld, the steady asymmetric °ow¯eld had to ¯rst be created. This was achieved by placing a permanent, geometric perturbation on the missile nose. The size of the perturbation used in the study, which was determined by an iterative process, did not force °ow separation at low angles of attack and resulted in a steady asym- metric °ow¯eld that was representative of that on a blunt-ogive body. The e®ect of changing the span of the strakelets and the axial position of the strakelets were then investigated. It was found that the strakelets with a span of 0:09D, placed 1D from the nose tip eliminated the side forces by forcing vortex symmetry. Increasing or decreasing the span of the strakelet, positioned 1D from the nose tip or placing the strakelets with a span of 0:09D closer or further away from the nose tip did not eliminate the steady vortex asymmetry.
2

Design and Realization of an Adjustable Fluid Powered Piston for an Active Air Spring

Hedrich, Philipp, Johe, Maik, Pelz, Peter F. 28 April 2016 (has links) (PDF)
In this paper, we present a new compact hydraulic linear actuator. The concept is developed to change the rolling piston diameter of an active air spring during usage. By doing so, the air spring can actively apply pressure and tension forces. The actuator is designed for small movements at high forces. It is insensitive to side forces, which are introduced by the bellows rolling on the rolling piston of the air spring. A diaphragm sealing is used to minimize friction. Hence a precise adjustment of small displacements at high dynamics is possible and the system is completely leakage-free. We describe the design and development of this actuator and show first measurement results from preliminary tests to show its functionality.
3

Estudo do escoamento de ar sobre a carroceria de um ônibus usando um programa de CFD e comparação com dados experimentais / Study of the air flow around a bus using CFD software and comparison with experimental data

Carregari, André Luiz 29 May 2006 (has links)
Dois dos principais objetivos no estudo da aerodinâmica de veículos comerciais são a redução no consumo de combustível e o aumento na eficiência da refrigeração do motor. Esses objetivos podem ser alcançados através do desenvolvimento de dispositivos que modifiquem o escoamento do ar ao redor do veículo e também através da alteração da forma das superfícies externas. A inclinação das superfícies da parte traseira de um ônibus, por exemplo, tem grande influência sobre a esteira turbulenta que se forma atrás do veículo. O uso de ferramentas computacionais permite uma redução de custo e maior flexibilidade na análise aerodinâmica de autoveículos. Ainda é preciso, no entanto, que o resultado dessas ferramentas computacionais seja verificado com o maior número possível de casos para que se possa escolher e ajustar o modelo matemático de forma adequada. O objetivo do presente trabalho é a verificação dos resultados computacionais e experimentais no desenvolvimento de metodologias que visem à redução no consumo de combustível e aumento na eficiência da refrigeração do motor. Foram comparados resultados experimentais e computacionais do escoamento sobre um modelo de um ônibus comercial em escala 1:17,5. Para a realização do experimento foi utilizado um túnel de vento de seção aberta, onde foram analisadas as distribuições de pressão nas superfícies da carroceria e o arrasto aerodinâmico. Para o teste computacional, foi utilizado um software de dinâmica dos fluidos computacional em que as equações de Navier-Stokes com média de Reynolds são resolvidas pelo método dos volumes finitos usando um modelo de turbulência RNG 'capa' - 'épsilon' / Two main objectives in the study of commercial vehicle aerodynamics are the reduction in fuel consumption and the improvement in engine refrigeration efficiency. These objectives can be achieved through development of devices which vary the flow characteristics around the vehicle and also through modification of the shape of external surfaces. The slope of rear surfaces, for instance, has large influence over the wake turbulence which forms behind the vehicle. The use of computational tools yields cost reduction and greater flexibility in automotive aerodynamic analysis. There is still a need, however, for verification of results, generated by these computational tools, with the largest possible number of test cases so that the mathematical model is adequately chosen and adjusted. The objective of the present work is the verification of experimental and computational results in the development of methodologies aiming at reduction of fuel consumption and improvement in engine refrigeration efficiency. Experimental and computational aerodynamic results were compared for a commercial bus model with a 1:17.5 scale. The experiments were conducted in an open section wind tunnel where pressure distribution and aerodynamic drag were analyzed. The numerical analysis was conducted using computational fluid dynamics software which solves the Reynolds Averaged Navier-Stokes equations using the finite volume method with a RNG 'capa' - 'épsilon' turbulence model
4

Estudo do escoamento de ar sobre a carroceria de um ônibus usando um programa de CFD e comparação com dados experimentais / Study of the air flow around a bus using CFD software and comparison with experimental data

André Luiz Carregari 29 May 2006 (has links)
Dois dos principais objetivos no estudo da aerodinâmica de veículos comerciais são a redução no consumo de combustível e o aumento na eficiência da refrigeração do motor. Esses objetivos podem ser alcançados através do desenvolvimento de dispositivos que modifiquem o escoamento do ar ao redor do veículo e também através da alteração da forma das superfícies externas. A inclinação das superfícies da parte traseira de um ônibus, por exemplo, tem grande influência sobre a esteira turbulenta que se forma atrás do veículo. O uso de ferramentas computacionais permite uma redução de custo e maior flexibilidade na análise aerodinâmica de autoveículos. Ainda é preciso, no entanto, que o resultado dessas ferramentas computacionais seja verificado com o maior número possível de casos para que se possa escolher e ajustar o modelo matemático de forma adequada. O objetivo do presente trabalho é a verificação dos resultados computacionais e experimentais no desenvolvimento de metodologias que visem à redução no consumo de combustível e aumento na eficiência da refrigeração do motor. Foram comparados resultados experimentais e computacionais do escoamento sobre um modelo de um ônibus comercial em escala 1:17,5. Para a realização do experimento foi utilizado um túnel de vento de seção aberta, onde foram analisadas as distribuições de pressão nas superfícies da carroceria e o arrasto aerodinâmico. Para o teste computacional, foi utilizado um software de dinâmica dos fluidos computacional em que as equações de Navier-Stokes com média de Reynolds são resolvidas pelo método dos volumes finitos usando um modelo de turbulência RNG 'capa' - 'épsilon' / Two main objectives in the study of commercial vehicle aerodynamics are the reduction in fuel consumption and the improvement in engine refrigeration efficiency. These objectives can be achieved through development of devices which vary the flow characteristics around the vehicle and also through modification of the shape of external surfaces. The slope of rear surfaces, for instance, has large influence over the wake turbulence which forms behind the vehicle. The use of computational tools yields cost reduction and greater flexibility in automotive aerodynamic analysis. There is still a need, however, for verification of results, generated by these computational tools, with the largest possible number of test cases so that the mathematical model is adequately chosen and adjusted. The objective of the present work is the verification of experimental and computational results in the development of methodologies aiming at reduction of fuel consumption and improvement in engine refrigeration efficiency. Experimental and computational aerodynamic results were compared for a commercial bus model with a 1:17.5 scale. The experiments were conducted in an open section wind tunnel where pressure distribution and aerodynamic drag were analyzed. The numerical analysis was conducted using computational fluid dynamics software which solves the Reynolds Averaged Navier-Stokes equations using the finite volume method with a RNG 'capa' - 'épsilon' turbulence model
5

Design and Realization of an Adjustable Fluid Powered Piston for an Active Air Spring

Hedrich, Philipp, Johe, Maik, Pelz, Peter F. January 2016 (has links)
In this paper, we present a new compact hydraulic linear actuator. The concept is developed to change the rolling piston diameter of an active air spring during usage. By doing so, the air spring can actively apply pressure and tension forces. The actuator is designed for small movements at high forces. It is insensitive to side forces, which are introduced by the bellows rolling on the rolling piston of the air spring. A diaphragm sealing is used to minimize friction. Hence a precise adjustment of small displacements at high dynamics is possible and the system is completely leakage-free. We describe the design and development of this actuator and show first measurement results from preliminary tests to show its functionality.
6

Influence of geometry and placement configuration on side forces in compression springs

Rahul Deshmukh (7847843) 12 November 2019 (has links)
<div>A leading cause of premature failure and excessive wear and tear in mechanical components that rely on compression springs for their operation is the development of unwanted side forces when the spring is compressed.</div><div>These side forces are usually around 10% - 20% of the magnitude of the axial load and point in different directions in the plane perpendicular to the axis of the spring.</div><div>The magnitude and direction of the resultant of side forces varies very non-linearly and unpredictably even though the axial force behavior of the spring is very consistent and predictable.</div><div>Since these side forces have to be resisted by the housing components that hold the spring in place, it is difficult to design these components for optimal operation.</div><div><br></div><div>The hypothesis of this study is that side forces are highly sensitive to small changes in spring geometry and its placement configuration in the housing. <br></div><div><div>Several experiments are conducted to measure the axial and side forces in barrel springs and two different types of finite element models are developed and calibrated to model the spring behavior. </div><div>Spring geometry and placement are parameterized using several control variables and an approach based on design of experiments is used to identify the critical parameters that control the behavior of side-forces. </div><div>The models resulted in deeper insight into the development of side forces as the spring is progressively loaded and how its contact interactions with the housing lead to changes in the side force.</div><div>It was found that side-forces are indeed sensitive to variations in spring geometry and placement.</div><div>These sensitivities are quantified to enable designers to and manufacturers of such springs to gain more control of side force variations between different spring specimens.</div></div>
7

Píst zážehového přeplňovaného motoru 2.0L / Piston for SI Turbocharged Engine 2.0L

Kusyn, Petr January 2013 (has links)
This diploma thesis is focused on solve of design solutions for piston for turbocharged version of Honda K20A engine, especially on reduce of side force acting on piston. There are mentioned methods and on their basis also design solutions for piston to reduce this force. There is also included kinematic and dynamic analysis for each solution and as well their FEM analysis for testing the suitability of these solutions.
8

Developing Force and Moment Measurement Capabilities in the Boeing/AFOSR Mach-6 Quiet Tunnel

Nathaniel T Lavery (12618784) 17 June 2022 (has links)
<p>The first force and moment measurements were conducted in the BAM6QT. Three 7-degree half-angle sharp cones were tested, one with base radius of 4.5 in. and two with base radius of 3.5 in. made out of different materials. Models were tested at 0 and 2 degrees angle of attack. Models were tested over a range of burst pressures and Reynolds numbers. Models were fitted onto a strain gauge, 6 component, internal, moment balance. Multiple assemblies were tested that mounted the balance in the BAM6QT. High-speed schlieren video was used to monitor flow conditions and track the movement of the tunnel and model. Three entries were performed in the BAM6QT. The improvement in data quality with each new entry is shown and the startup and running loads from entry 3 are analyzed.</p> <p>Startup loads were measured and are of importance in determining the load range needed to operate in the BAM6QT. Large startup loads up to 40X the running load were identified. Tunnel movement was measured and was used to approximate the inertial loading during startup and the run. The inertial loading was not found to be the cause of the large startup loads. Schlieren video was used to qualitatively review the startup flow. It was found the large startup loads in axial force were plausibly from the high-pressure subsonic flow evacuating the nozzle. For normal force and pitching moment, the startup loads peak at a different time than axial force and appear to be from a shock-shock interaction nearby the model. Trends in startup load with changing model geometry, AoA, and burst pressure were put together to form an empirical estimation for startup loads sharp cones. </p> <p>Running loads were profiled and found to be trending with burst pressure and model geometry similarly to Newtonian flow theory predictions. However, due to the lack of a base pressure measurement, the results are uncorrected for sting effects and differ from Newtonian flow theory by a scalar. A 5.3 Hz oscillation in axial force was identified. The frequency of the oscillation is the same as the frequency of the quasi-steady flow periods caused by the reflection of the expansion fan in the driver tube. Normal force during the running load was found to be measuring positive loads when at 0 degrees angle of attack. Both the axial and normal force phenomena were unexpected and were investigated but both require further research. </p> <p><br></p> <p><br></p> <p><br></p> <p><br></p>

Page generated in 0.0458 seconds