• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue load monitoring of offshore wind turbine support structures

Marsh, Gabriel January 2016 (has links)
The uptake of renewable energy sources has increased dramatically in recent decades, in response to the contribution to climate change attributed to CO2 emissions from the burning of fossil fuels, the need for governments to maximise the use of domestic energy forms with depleting conventional sources, and to reduce exposure to fuel price volatility. Renewable energy targets set by the European Union have been supported by legislation and economic incentives, and have resulted in a sharp increase in installed wind power capacity in particular. Wind power is seen as a particularly attractive source of renewable energy capacity in the UK due to favourable resources and a competitive cost of energy for onshore sites, with 8.8 GW of capacity currently installed [1]. Constraints from visual and environmental impacts, together with improved wind resources, have led to the acceptance of greater financial costs and the exploitation of offshore sites, with over 5 GW installed to date [1]. Both onshore and offshore, the wind industry now has significant operational experience, with some of the earliest wind farms approaching the end of their design life. Material fatigue is a design critical factor which dictates the safe operational life of wind turbines, but is subjected to numerous areas of uncertainty in the level of environmental loading and structural response, as well as material properties and manufacturing methods. Therefore, a conservative design must be ensured from the outset, which presents the potential for fatigue life extension of installed assets if improved knowledge of their operational experience can be obtained. This thesis details the methodology for a fatigue load assessment of operational offshore wind turbine support structures using measured data, and attempts to quantify areas of loading which contribute to total fatigue damage. The methodologies developed build on existing recommendations for onshore wind turbines to incorporate the additional effects of the offshore environment. Results from measured loading suggest that design fatigue levels can be reduced if operational monitoring is included. Operational experience can allow design conservatism, which is necessary due to uncertainties in structural properties and in levels of stochastic loading, to be more accurately quantified.
2

THE DYNAMIC STRUCTURE OF EPHEMERAL STREAMS

Renard, Kenneth G. January 1972 (has links)
No description available.
3

Economic evaluation of a district cooling system incorporating thermal storage.

Bannerman, Andrew. 10 November 2011 (has links)
The following report investigates district cooling systems. This form of technology provides an alternative means of providing cooling. In a traditional cooling system each building would include cooling equipment to serve only that building. District cooling differs in that water is chilled at one location and pumped to two or more buildings. District cooling has many benefits over traditional cooling systems. This report, however, aims to determine the economic benefits (if any) of district cooling systems. The location chosen as a model for this study was the University of Natal (Durban) campus. This campus currently operates a district cooling system serving six buildings. This study is hypothetical in nature, as the cooling system is already finalized and operational. The aim of this dissertation is to answer the question of which would be the more attractive alternative if the University were in a position of having to install a completely cooling system. One of the most important steps in this process is the calculation of cooling loads. The cooling load was estimated for each of the buildings associated with the district cooling system. The LOADEST software package was used to derive these cooling loads. The accuracy of LOADEST software was also validated in this study. The bulk of this report is composed of the preliminary work required to obtain capital and operating costs for cooling systems, including validation of cooling load calculation software. It was felt that this prelimiinary work justified inclusion in the final report to provide accurate representation of the steps taken before any economic evaluation could be reached. The capital and operating costs of the district cooling system and a more traditional system were compared. It was found that the district cooling system reduces operating costs significantly, although it's capital cost is higher than the traditional system against which it was compared. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.
4

STUDIES TO IMPROVE EXHAUST SYSTEM ACOUSTIC PERFORMANCE BY DETERMINATION AND ASSESSMENT OF THE SOURCE CHARACTERISTICS AND IMPEDANCE OPTIMIZATION

Zhang, Yitian 01 January 2016 (has links)
It is shown that the relationship between an impedance change and the dynamic response of a linear system is in the form of the Moebius transformation. The Moebius transformation is a conformal complex transformation that maps straight lines and circles in one complex plane into straight lines and circles in another complex plane. The center and radius of the mapped circle can be predicted provided that all the complex coefficients are known. This feature enables rapid determination of the optimal impedance change to achieve desired performance. This dissertation is primarily focused on the application of the Moebius transformation to enhance vibro-acoustic performance of exhaust systems and expedite the assessment due to modifications. It is shown that an optimal acoustic impedance change can be made to improve both structural and acoustic performance, without increasing the overall dimension and mass of the exhaust system. Application examples include mufflers and enclosures. In addition, it is demonstrated that the approach can be used to assess vibration isolators. In many instances, the source properties (source strength and source impedance) will also greatly influence exhaust system performance through sound reflections and resonances. Thus it is of interest to acoustically characterize the sources and assess the sensitivity of performance towards source impedance. In this dissertation, the experimental characterization of source properties is demonstrated for a diesel engine. Moreover, the same approach can be utilized to characterize other sources like refrigeration systems. It is also shown that the range of variation of performance can be effectively determined given the range of source impedance using the Moebius transformation. This optimization approach is first applied on conventional single-inlet single-outlet exhaust systems and is later applied to multi-inlet multi-outlet (MIMO) systems as well, with proper adjustment. The analytic model for MIMO systems is explained in details and validated experimentally. The sensitivity of MIMO system performance due to source properties is also investigated using the Moebius transformation.
5

Molecular diagnostics of the bacterial response to antibiotic therapy

Brennecke, Johannes January 2017 (has links)
Bacterial bloodstream infections (BSIs) are a major healthcare problem causing high mortality and economic cost. BSIs require an immediate initiation of antibiotic therapy as any delay is associated with a mortality increase. With the emergence of antimicrobial resistance, the choice of the appropriate antibiotic becomes increasingly difficult, thus creating an urgent need for new diagnostics, ideally to be done at the point of care. The current gold standard is blood culture with subsequent susceptibility testing although several molecular methods have recently entered the market. However, in many instances there is a discrepancy between the in-vitro data provided by the test and the outcome of antimicrobial therapy in-vivo because current diagnostics fail to take into account the impact of the environment in the patient such as the immune system, pharmacokinetics and pharmacodynamics or bacterial fitness. In this thesis, it was hypothesised that the measurement of the bacterial gene expression after the beginning of antibiotic therapy might be a more accurate indicator of the therapy outcome because it reflects the bacterial response under in-vivo conditions. In the first part of the thesis the expression of a set of pre-defined mRNA markers was investigated under various conditions. Experiments conducted with clinical E. coli isolates incubated in human whole blood revealed an excellent correlation between the gene expression, the treatment outcome, the antibiotic susceptibility and the genetic background for three different classes of antimicrobial drugs. The second part of the thesis describes the extraction of bacterial RNA from human whole blood specimen. The effect of different agents for the lysis of human blood cells and the impact of co-purified human RNA were analysed and a method for high yield extraction of undegraded bacterial RNA was established. The third part of the thesis investigates two methods for the sensitive measurement of the bacterial gene expression. This is relevant because the bacterial loads in BSI patients are extremely low. For genes with high gene expression levels both methods yielded reliable results but were unable to quantify the expression of the previously investigated mRNA markers due to their low copy numbers. Other approaches, especially those based on single cell measurements, might be able to overcome the problem in the future and should be explored in greater detail. Overall, the foundations for a future diagnostic test based on the measurement of the bacterial gene expression have been laid in this work. Future work should address the mRNA quantification and further evaluate the connection between gene expression and therapy outcome, e.g. in animal models. A future diagnostic test should also fulfil point-of-care requirements. This will include integrated sample preparation and quantification as well as a time-to-result in the range of a few minutes.
6

A Secondary Task Test for Evaluating Cognitive Load of MRP Pilots

Farshidi, Azadeh January 2017 (has links)
Remotely-controlled technologies are no longer limited to military applications, such as unmanned military airborne weapons or explosive diffuser robots. Nowadays we can see more and more of remotely controlled devices used as medical equipment, toys, and so forth. One of the most recent areas of interest is robotic telepresence, also known as Mobile Robot Presence (MRP), which provides the ability to interact socially and professionally with other people and even objects in remote locations. One of the known issues with using remotely-controlled devices is the cognitive overload which their operators (pilots) experience and MRP pilots are no exception. However, despite vast research on different ways to address this in military or medical scenarios, little has been done regarding MRPs. This thesis study aims to make a contribution in closing that gap by suggesting a method, developing a prototype implementing it; then conducting an empirical assessment of the method and the prototype as a part of a broader study on MRP, supported by Swedish Research Council. I have suggested a method comprised of a Secondary-task (ST) method and Subjective Rating Scales (SRS), in which the latter act as an evaluation method for the former. Both of them were used in an overarching study in search for the best control device amongst four chosen devices. I collected and analyzed secondary task performance data (e.g. response time, error rates), subjective user ratings, explicit rankings, and observations recordings. My analysis of the collected data shows that using a monitoring and response face recognition secondary task is a plausible method for the assessment of MRP pilot’s cognitive load.
7

Analýza opotřebení řezných nástrojů při soustružení konstrukční oceli / Analysis of cutting tool wear while turning construction steel

Kudela, Jan January 2019 (has links)
The goal of the thesis is wear analysis of cutting inserts used for machining 42CrMo4 steel. Theoretical part of the thesis contains comparison of turning and milling machining processes, machining methods for ball screws made of 42CrMo4 and description of experimental methods of tool wear analysis. Experimental part of thesis contains methodology of cutting inserts wear measurement for chosen machining method. The following testing is focused on cutting insert wear as well as workpiece surface analysis. Thesis is finished with processing of measured data and overall evaluation of achieved results.
8

Analyse et modélisation du comportement de divers matériaux en érosion de cavitation / Modeling and analysis of material behavior during cavitation erosion

Roy, Samir Chandra 11 December 2015 (has links)
A ce jour il n'est toujours pas possible de prédire avec exactitude le phénomène d'érosion par cavitation. La raison principale est qu'il est difficile de caractériser l'agressivité de l'écoulement. Cette thèse propose d'utiliser une méthode inverse pour estimer l'agressivité de l'écoulement à partir de l'observation des cratères (pits) imprimées sur la surface dans les premiers instants de l'érosion de cavitation. Trois matériaux ont été testés dans la veine d'écoulement PREVERO disponible au LEGI de Grenoble dans les mêmes conditions expérimentales. La géométrie des pits laissés sur la surface est précisément mesurée à l'aide d'une méthode systématique permettant de s'affranchir de l'effet de rugosité. Supposant que chaque pit a été généré par une bulle unique dont le champ de pression est assimilé à une forme Gaussienne, des calculs par éléments finis permettent d'estimer le chargement qui a créé l'empreinte résiduelle. On montre que la distribution des chargements suit une loi universelle indépendante du matériau testé; le matériau le plus tendre (alliage d'aluminium) mesurant les plus faibles impacts tandis que le matériau le plus résistant (Acier inoxydable) donne accès aux plus grandes pressions d'impact. On en conclu que le matériau peut être utilisé comme capteur de pression mesurant le niveau d'agressivité de l'écoulement. La méthode inverse repose sur une caractérisation mécanique des matériaux prenant en compte la sensibilité de la contrainte à la vitesse de déformation. On montre que les essais de nanoindentation sont mieux adaptés que les essais de compression pour déterminer les paramètres de la loi de comportement, notamment pour l'alliage d'aluminium pour lequel la microstructure est très hétérogène. Des essais de compression à haute vitesse par barres de Hopkinson complètent la loi de comportement en donnant la sensibilité à la vitesse de déformation. Des simulations prenant en compte la dynamique du chargement montrent que des impacts de fort amplitude mais appliqués sur un temps court ne laissent pas d'empreinte résiduelle si la fréquence est plus élevée que la fréquence naturelle du matériau assimilé à un oscillateur amorti. Un mécanisme d'accumulation dynamique de la déformation plastique pouvant conduire à la rupture par fatigue est proposé. Finalement, la courbe de perte de masse est simulée en appliquant aléatoirement sur un maillage 3D, la population d'impacts estimée par la méthode inverse. / Numerical prediction of cavitation erosion requires the knowledge of flow aggressiveness, both of which have been challenging issues till-date. This thesis proposes to use an inverse method to estimate the aggressiveness of the flow from the observation of the pits printed on the surface in the first moments of the cavitation erosion. Three materials were tested in the same experimental conditions in the cavitation tunnel PREVERO available LEGI Grenoble. The geometry of the pits left on the surface is precisely measured using a systematic method to overcome the roughness effect. Assuming that each pit was generated by a single bubble collapse whose pressure field is treated as a Gaussian shape, finite element calculations are run for estimating the load that created each residual imprint. It is shown that the load distribution falls on a master curve independent of the tested material; the softer material (aluminum alloy) measuring the lowest impacts while the most resistant material (duplex stainless steel) provides access to the largest impact pressures. It is concluded that the material can be used as a pressure sensor measuring the level of aggressiveness of the flow. The inverse method is based on a material characterization taking into account strain rate effects. It is shown that nanoindentation tests are more suitable than compression tests to determine the parameters of the behavior law, particularly for the aluminum alloy for which the microstructure is very heterogeneous. High-speed compression tests with split Hopkinson pressure bars complement the constitutive law giving the sensitivity to the strain rate. Simulations considering the dynamic loading show that impacts of strong amplitude but applied in a short time do not leave any residual pit if the frequency is higher than the natural frequency of the material treated as a damped oscillator. A dynamic mechanism of plastic strain accumulation that could eventually lead to fatigue failure is proposed. Finally, the mass loss curve of cavitation erosion is simulated by applying randomly on a 3D mesh, the impact force population estimated by the inverse method.
9

Measuring Cognitive Load in Embodied Learning Settings

Skulmowski, Alexander, Rey, Günter Daniel 02 August 2017 (has links)
In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education) in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1) Subjective measures must be appropriately phrased to be useful for embodied learning; (2) recent findings indicate potentials as well as problematic aspects of dual-task measures; (3) the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4) meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning.
10

Developing Force and Moment Measurement Capabilities in the Boeing/AFOSR Mach-6 Quiet Tunnel

Nathaniel T Lavery (12618784) 17 June 2022 (has links)
<p>The first force and moment measurements were conducted in the BAM6QT. Three 7-degree half-angle sharp cones were tested, one with base radius of 4.5 in. and two with base radius of 3.5 in. made out of different materials. Models were tested at 0 and 2 degrees angle of attack. Models were tested over a range of burst pressures and Reynolds numbers. Models were fitted onto a strain gauge, 6 component, internal, moment balance. Multiple assemblies were tested that mounted the balance in the BAM6QT. High-speed schlieren video was used to monitor flow conditions and track the movement of the tunnel and model. Three entries were performed in the BAM6QT. The improvement in data quality with each new entry is shown and the startup and running loads from entry 3 are analyzed.</p> <p>Startup loads were measured and are of importance in determining the load range needed to operate in the BAM6QT. Large startup loads up to 40X the running load were identified. Tunnel movement was measured and was used to approximate the inertial loading during startup and the run. The inertial loading was not found to be the cause of the large startup loads. Schlieren video was used to qualitatively review the startup flow. It was found the large startup loads in axial force were plausibly from the high-pressure subsonic flow evacuating the nozzle. For normal force and pitching moment, the startup loads peak at a different time than axial force and appear to be from a shock-shock interaction nearby the model. Trends in startup load with changing model geometry, AoA, and burst pressure were put together to form an empirical estimation for startup loads sharp cones. </p> <p>Running loads were profiled and found to be trending with burst pressure and model geometry similarly to Newtonian flow theory predictions. However, due to the lack of a base pressure measurement, the results are uncorrected for sting effects and differ from Newtonian flow theory by a scalar. A 5.3 Hz oscillation in axial force was identified. The frequency of the oscillation is the same as the frequency of the quasi-steady flow periods caused by the reflection of the expansion fan in the driver tube. Normal force during the running load was found to be measuring positive loads when at 0 degrees angle of attack. Both the axial and normal force phenomena were unexpected and were investigated but both require further research. </p> <p><br></p> <p><br></p> <p><br></p> <p><br></p>

Page generated in 0.0157 seconds