Spelling suggestions: "subject:"didemnimide"" "subject:"dideuteride""
1 |
Preparation and characterization of a self-crimp side-by-side bicomponent electrospun materialHan, Yang 02 August 2012 (has links)
Bicomponent composite fibers have been widely used in the textile industry and are gaining increasing attention on biomedical applications. In this research, polycaprolactone/poly (lactic acid) side-by-side bicomponent fibers were created for the application of a biodegradable scaffold. The side-by-side structure endowed the fiber with self-crimps when it was processed under certain conditions. This material was produced by electrospinning and collected on a high speed rotating mandrel to get highly oriented fibers. A mechanical stretch at the same direction was done followed by a wet heat treatment for polymer retraction. Crimped fibers were demonstrated by scanning electron microscopy. The quantitative porosity and uniaxial tensile strength was not affected by the post-treatments, but the cell ingrowth and proliferation after seeding the scaffold were significantly improved. In conclusion, the side-by-side crimped material serves as a better extracellular matrix analogue without sacrificing mechanical properties.
|
2 |
Development of a Human Accompanying Wheelchair using Ultrasonic TetheringPingali, Theja Ram 05 July 2019 (has links)
In social situations, people who use a powered wheelchair must divide their attention between navigating the chair and conversing with people. As a solution that maintains a good conversation distance between the wheelchair and the accompanying person, a wheelchair control system was introduced to provide automated side-by-side following by wirelessly tethering the wheelchair to the person.
This thesis designed, developed, and evaluated a wireless tethering system using ultrasonic sensors. Two ping sensors and three piezoelectric ultrasonic transducers were used to identify the accompanying person and determine their pose. A trajectory algorithm determined the person’s direction of motion and a drive control algorithm determined the wheelchair’s required direction by maintaining a comfortable conversation distance between the person and the wheelchair user. A plug-and-play prototype was developed using commercially available components and the firmware was implemented using an open-source platform. The prototype developed in this thesis was mounted to a Permobil F3 Corpus powered wheelchair with a modified Eightfold Technologies SmartChair Remote, which controlled the wheelchair direction.
Results demonstrated that the system can navigate a wheelchair beside an accompanying person and maintain a comfortable conversation distance, which is advantageous for users who require hands-free wheelchair control during social activities.
|
3 |
The side-by-side model of DNA: logic in a scientific inventionStokes, Terence Douglas January 1983 (has links)
Watson and Crick’s double-helical model of DNA is considered to be one of the great discoveries in biology. However, in 1976, two groups of scientists, one in New Zealand, the other in India, independently published essentially the same radical alternative to the double helix. The alternative, Side-By-Side (SBS) or ‘warped zipper’ conformation for DNA is not helical. Rather than intertwine, as do Watson and Crick’s helices, its two exoskeletal strands are topologically independent. Thus, unlike the double helix, they may separated during replication without unwinding. This dissertation presents, but does not arbitrate among scientific arguments. Its concerns are meta-scientific; in particular, why and how the individuals who invented the & ‘warped zipper’ came to do so. Against Popper and most recent philosophers of science, it is taken to be “the business of epistemology to produce what has been called a ‘rational reconstruction’ of the steps that have led the scientist to a discovery [Popper (1972), p.31, emphasis in the original].” On the received view, the invention of the ‘warped zipper’ must be irrational or, at best, non-rational thereby excluding from philosophical investigation. I establish that this philosophical dogma is not true a priori, as is usually supposed, and, in the case of the SBS structure of DNA, false a posteriori. The motivation for, and development of the SBS structure for DNA reveals a process best characterized as significantly, though not entirely, rational.
|
4 |
The side-by-side model of DNA: logic in a scientific inventionStokes, Terence Douglas January 1983 (has links)
Watson and Crick’s double-helical model of DNA is considered to be one of the great discoveries in biology. However, in 1976, two groups of scientists, one in New Zealand, the other in India, independently published essentially the same radical alternative to the double helix. The alternative, Side-By-Side (SBS) or ‘warped zipper’ conformation for DNA is not helical. Rather than intertwine, as do Watson and Crick’s helices, its two exoskeletal strands are topologically independent. Thus, unlike the double helix, they may separated during replication without unwinding. This dissertation presents, but does not arbitrate among scientific arguments. Its concerns are meta-scientific; in particular, why and how the individuals who invented the & ‘warped zipper’ came to do so. Against Popper and most recent philosophers of science, it is taken to be “the business of epistemology to produce what has been called a ‘rational reconstruction’ of the steps that have led the scientist to a discovery [Popper (1972), p.31, emphasis in the original].” On the received view, the invention of the ‘warped zipper’ must be irrational or, at best, non-rational thereby excluding from philosophical investigation. I establish that this philosophical dogma is not true a priori, as is usually supposed, and, in the case of the SBS structure of DNA, false a posteriori. The motivation for, and development of the SBS structure for DNA reveals a process best characterized as significantly, though not entirely, rational.
|
5 |
Dynamic analysis of multiple-body floating platforms coupled with mooring lines and risersKim, Young-Bok 30 September 2004 (has links)
A computer program, WINPOST-MULT, is developed for the dynamic analysis of a multiple-body floating system coupled with mooring lines and risers in the presence of waves, winds and currents. The coupled dynamics program for a single platform is extended for analyzing multiple-body systems by including all the platforms, mooring lines and risers in a combined matrix equation in the time domain. Compared to the iteration method between multiple bodies, the combined matrix method can include the full hydrodynamic interactions among bodies. The floating platform is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass coefficients, and radiation damping coefficients are calculated from the hydrodynamics program WAMIT for multiple bodies. Then, the time series of wave forces are generated in the time domain based on the two-term Volterra model. The wind forces are separately generated from the input wind spectrum and wind force formula. The current is included in Morison's drag force formula. In case of FPSO, the wind and current forces are generated using the respective coefficients given in the OCIMF data sheet. A finite element method is derived for the long elastic element of an arbitrary shape and material. This newly developed computer program is first applied to the system of a turret-moored FPSO and a shuttle tanker in tandem mooring. The dynamics of the turret-moored FPSO in waves, winds and currents are verified against independent computation and OTRC experiment. Then, the simulations for the FPSO-shuttle system with a hawser connection are carried out and the results are compared with the simplified methods without considering or partially including hydrodynamic interactions.
|
6 |
Dynamic analysis of multiple-body floating platforms coupled with mooring lines and risersKim, Young-Bok 30 September 2004 (has links)
A computer program, WINPOST-MULT, is developed for the dynamic analysis of a multiple-body floating system coupled with mooring lines and risers in the presence of waves, winds and currents. The coupled dynamics program for a single platform is extended for analyzing multiple-body systems by including all the platforms, mooring lines and risers in a combined matrix equation in the time domain. Compared to the iteration method between multiple bodies, the combined matrix method can include the full hydrodynamic interactions among bodies. The floating platform is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass coefficients, and radiation damping coefficients are calculated from the hydrodynamics program WAMIT for multiple bodies. Then, the time series of wave forces are generated in the time domain based on the two-term Volterra model. The wind forces are separately generated from the input wind spectrum and wind force formula. The current is included in Morison's drag force formula. In case of FPSO, the wind and current forces are generated using the respective coefficients given in the OCIMF data sheet. A finite element method is derived for the long elastic element of an arbitrary shape and material. This newly developed computer program is first applied to the system of a turret-moored FPSO and a shuttle tanker in tandem mooring. The dynamics of the turret-moored FPSO in waves, winds and currents are verified against independent computation and OTRC experiment. Then, the simulations for the FPSO-shuttle system with a hawser connection are carried out and the results are compared with the simplified methods without considering or partially including hydrodynamic interactions.
|
7 |
Estudo de aplicação de ferramentas numéricas ao problema de ressonância de ondas na operação de alívio lado a lado. / Study of application of numerical tools of the wave resonance problem in side-by-side offocading operation.Dotta, Raul 30 March 2017 (has links)
Este trabalho apresenta uma abordagem numérica com base em ensaios experimentais previamente realizados, direcionada ao problema de ressonância do campo de ondas em operações de alívio lado a lado (side by side). Os efeitos dessas interferências hidrodinâmicas são responsáveis por alterar drasticamente o campo de ondas em regiões de confino, gerando amplificação nos movimentos de primeira ordem e trazendo risco à operação. Este fenômeno está presente em diversas áreas da exploração e produção offshore e vem sendo o principal objeto de estudo nos últimos anos, principalmente em operações de alívio lado a lado, nos quais existe uma grande preocupação de colisão, rompimento dos cabos e integridade estrutural das defensas, devido à proximidade dos cascos. Neste contexto, devido à complexidade do problema, a modelagem numérica utilizada para interpretar o fenômeno de ressonância em softwares comerciais deve ser realizada com cautela, sendo que a utilização direta desta ferramenta gera amplificações equivocadas da superfície ressonante uma vez que esta resolução tem como base a teoria potencial. As diferenças observadas durante a comparação entre ensaios numéricos e experimentais são causadas em virtude da negligência na avaliação da dissipação de parte da energia das ondas ressonantes provocadas devido aos efeitos como viscosidade, vorticidade e turbulência do escoamento. Com o objetivo de analisar corretamente este fenômeno por meio de ensaios numéricos, uma maneira consiste na inclusão de adaptações no modelo para atingir os resultados desejáveis. Estas adaptações consistem na implementação de métodos artificiais, tais como os chamados \"Modos Generalizados\" e \"Praias Numéricas\", aplicados à região entre as embarcações com o intuito de amortecer as elevações irrealistas da superfície. Sendo assim, este trabalho abordará o problema de ressonância de ondas, investigando o desempenho de duas ferramentas numéricas para a sua predição, o WAMIT (Wave Analysis Massachusetts Institute of Technology) e o TDRPM (Time Domain Rankine Painel Method). Os resultados serão comparados com dados obtidos em um conjunto de ensaios em escala reduzida, realizado previamente no laboratório Tanque de Provas Numérico da USP (TPN). Dessa forma, o estudo dos fenômenos de ressonância será discutido, principalmente, em seu aspecto numérico, visando à verificação do desempenho do WAMIT e do TDRPM. / This work presents a numerical study based on previously conducted experimental studies, focused on the problem of resonance of the wave field in operations involving multi-body. The hydrodynamic interferences effects are responsible for drastically changing the wave field in confine regions, generating amplification of first order movements and bringing operational risk. This phenomenon is present in several areas of offshore exploration and production and has been the main object of study in recent years, mainly in side-by-side offloading operations, in which there is a great concern due to the risk of mooring lines breaking, damages to the fenders and also collision. In this context, due to the complexity of the problem, the numerical modeling used to evaluate the resonance phenomenon in commercial software becomes unsuitable, generating erroneous amplifications of the resonant surface since it is based on the potential theory. The differences observed during the comparisons between numerical and experimental tests are caused by negligence in the evaluation of the dissipation of part of the resonant wave energy caused by viscosity, vorticity and flow turbulence effects. In order to correctly analyze this phenomenon through numerical tests, one way is to include adaptations on the model to achieve the desired results. These adaptations consist of the implementation of artificial methods, such as \"Generalized Modes\" and \"Numerical Damping Zones\", applied to the region between the vessels in order to damp the unrealistic elevations of the surface. Thus, this study will approach the problem of gap wave resonance, investigating the performance of two numerical tools for its prediction, WAMIT (Wave Analysis Massachusetts Institute of Technology) and TDRPM (Time Domain Rankin Panel Method). The results will be compared with data obtained from a set of small scale tests previously performed at the Numerical Test Tank of USP laboratory (TPN). Therefore, the study of resonance phenomena will be discussed, mainly, in its numerical aspect, in order to verify the performance of WAMIT and TDRPM.
|
8 |
Side-by-side in the Land of Giants : a study of space, contact and civility in BelfastLepp, Eric January 2018 (has links)
In Northern Ireland, the Good Friday Agreement brought with it a great deal of attention and initiatives to construct and increase intergroup contact and shared spaces in an effort to reconcile divided nationalist/Catholic and unionist/Protestant communities. In the time following this peace agreement, the Belfast Giants ice hockey team was established, and in their 16 years as a team they have become one of the most attended spectator activities in Belfast, trending away from the tribalism, single-space, single-class, and single-gender dynamics of modern sport in Northern Ireland. This thesis research followed the supporters of the Belfast Giants throughout the 2015-2016 ice hockey season to better understand the encounters across historical divisions that are occurring in the Scottish and Southern Energy (SSE) Arena. The research of this PhD thesis is directed by the concepts of social capital, intergroup contact, and civility. These concepts, when placed within the context of divided society, contribute to the thesis' guiding analytical framework, which offers thematic guideposts in areas of prejudice and anxiety, tolerance and trust, space and identity. Influenced by in-depth qualitative research that seeks to access local voices, this research takes the conceptual and analytical guidance into the stands of the SSE Arena. In this way, the unique 'side-by-side' methodology, which involved conducting interviews with the person in the seat to my left or right at Belfast Giants ice hockey games while immersing myself in the supporter community, emerged as not only a contribution to unearthing new voices in this oft-studied region, but also as an innovative contribution to qualitative methodological literatures. Beyond the methodological contribution, this thesis makes two further contributions to existing academic literatures on post-peace agreement relationships. The first of these is through the clear relationship between identity and space that are evident in its findings. Between the poles of conflict and reconciliation are the complex and simple interactions, which when placed in the SSE Arena at a Belfast Giants game illustrate the multi-layered and fluid nature of identity. The thesis finds the hockey arena is a space where a shared identity, 'the hockey family', materialises and includes nationalist and unionist populations. This shared identity is deeply connected to a physical place and activity that are situated outside the all-encompassing nature of division in present-day Belfast. However, within the unusual setting of an ice hockey arena in Northern Ireland there emerges ordinariness in encounter across historical cleavage, and from these mundane interactions comes the final contribution 'side-by-sidedness'. Influenced by supporters' willingness to sit side-by-side those on the opposite side of a historical division who they may not be willing to live beside, this theme is framed as a lightened encounter that challenges assumptions inherent in post-peace agreement settings. The research findings frame the SSE Arena as a site of sanctuary from polarised sectarian identities and activities, as well as a site of resistance from overarching peace agendas that push shared space and seek reconciliation. Side-by-sidedness exists in the everyday between these two poles. In highlighting this space between, this theme challenges the assumptions of 'face-to-faceness' that are inherent across the three concepts informing this thesis and through utilising notions of everyday peace and everyday division to include the relational, the spatial and the metaphorical, this thesis' meta-theme frames a new way of 'getting on with it' in the shadows of conflict.
|
9 |
Estudo de aplicação de ferramentas numéricas ao problema de ressonância de ondas na operação de alívio lado a lado. / Study of application of numerical tools of the wave resonance problem in side-by-side offocading operation.Raul Dotta 30 March 2017 (has links)
Este trabalho apresenta uma abordagem numérica com base em ensaios experimentais previamente realizados, direcionada ao problema de ressonância do campo de ondas em operações de alívio lado a lado (side by side). Os efeitos dessas interferências hidrodinâmicas são responsáveis por alterar drasticamente o campo de ondas em regiões de confino, gerando amplificação nos movimentos de primeira ordem e trazendo risco à operação. Este fenômeno está presente em diversas áreas da exploração e produção offshore e vem sendo o principal objeto de estudo nos últimos anos, principalmente em operações de alívio lado a lado, nos quais existe uma grande preocupação de colisão, rompimento dos cabos e integridade estrutural das defensas, devido à proximidade dos cascos. Neste contexto, devido à complexidade do problema, a modelagem numérica utilizada para interpretar o fenômeno de ressonância em softwares comerciais deve ser realizada com cautela, sendo que a utilização direta desta ferramenta gera amplificações equivocadas da superfície ressonante uma vez que esta resolução tem como base a teoria potencial. As diferenças observadas durante a comparação entre ensaios numéricos e experimentais são causadas em virtude da negligência na avaliação da dissipação de parte da energia das ondas ressonantes provocadas devido aos efeitos como viscosidade, vorticidade e turbulência do escoamento. Com o objetivo de analisar corretamente este fenômeno por meio de ensaios numéricos, uma maneira consiste na inclusão de adaptações no modelo para atingir os resultados desejáveis. Estas adaptações consistem na implementação de métodos artificiais, tais como os chamados \"Modos Generalizados\" e \"Praias Numéricas\", aplicados à região entre as embarcações com o intuito de amortecer as elevações irrealistas da superfície. Sendo assim, este trabalho abordará o problema de ressonância de ondas, investigando o desempenho de duas ferramentas numéricas para a sua predição, o WAMIT (Wave Analysis Massachusetts Institute of Technology) e o TDRPM (Time Domain Rankine Painel Method). Os resultados serão comparados com dados obtidos em um conjunto de ensaios em escala reduzida, realizado previamente no laboratório Tanque de Provas Numérico da USP (TPN). Dessa forma, o estudo dos fenômenos de ressonância será discutido, principalmente, em seu aspecto numérico, visando à verificação do desempenho do WAMIT e do TDRPM. / This work presents a numerical study based on previously conducted experimental studies, focused on the problem of resonance of the wave field in operations involving multi-body. The hydrodynamic interferences effects are responsible for drastically changing the wave field in confine regions, generating amplification of first order movements and bringing operational risk. This phenomenon is present in several areas of offshore exploration and production and has been the main object of study in recent years, mainly in side-by-side offloading operations, in which there is a great concern due to the risk of mooring lines breaking, damages to the fenders and also collision. In this context, due to the complexity of the problem, the numerical modeling used to evaluate the resonance phenomenon in commercial software becomes unsuitable, generating erroneous amplifications of the resonant surface since it is based on the potential theory. The differences observed during the comparisons between numerical and experimental tests are caused by negligence in the evaluation of the dissipation of part of the resonant wave energy caused by viscosity, vorticity and flow turbulence effects. In order to correctly analyze this phenomenon through numerical tests, one way is to include adaptations on the model to achieve the desired results. These adaptations consist of the implementation of artificial methods, such as \"Generalized Modes\" and \"Numerical Damping Zones\", applied to the region between the vessels in order to damp the unrealistic elevations of the surface. Thus, this study will approach the problem of gap wave resonance, investigating the performance of two numerical tools for its prediction, WAMIT (Wave Analysis Massachusetts Institute of Technology) and TDRPM (Time Domain Rankin Panel Method). The results will be compared with data obtained from a set of small scale tests previously performed at the Numerical Test Tank of USP laboratory (TPN). Therefore, the study of resonance phenomena will be discussed, mainly, in its numerical aspect, in order to verify the performance of WAMIT and TDRPM.
|
10 |
Koopman mode analysis of the side-by-side cylinder wakeRöjsel, Jimmy January 2017 (has links)
In many situations, fluid flows can exhibit a wide range of temporal and spatial phenomena. It has become common to extract physically important features, called modes, as a first step in the analysis of flows with high complexity. One of the most prominent modal analysis techniques in the context of fluid dynamics is Proper Orthogonal Decomposition (POD), which enables extraction of energetically coherent structures present in the flow field. This method does, however, suffer from the lack of connection with the mathematical theory of dynamical systems and its utility in the analysis of arbitrarily complex flows might therefore be limited. In the present work, we instead consider application of the Koopman Mode Decomposition (KMD), which is an approach based on spectral decomposition of the Koopman operator. This technique is employed for modal analysis of the incompressible, two-dimensional ow past two side-by-side cylinders at Re = 60 and with a non-dimensional cylinder gap spacing g* = 1. This particular configuration yields a wake ow which exhibits in-phase vortex shedding during finite time, while later transforming into the so-called flip-flopping phenomena, which is characterised by a slow, periodic switching of the gap ow direction during O(10) vortex shedding cycles. The KMD approach yields modal structures which, in contrary to POD, are associated with specific oscillation frequencies. Specifically, these structures are here vorticity modes. By studying these modes, we are able to extract the ow components which are responsible for the flip-flop phenomenon. In particular, it is found that the flip-flop instability is mainly driven by three different modal structures, oscillating with Strouhal frequencies St1 = 0:023, St2 = 0:121 and St3 = 0:144, where it is noted that St3 = St1 + St2. In addition, we study the in-phase vortex shedding regime, as well as the transient regime connecting the two states of the flow. The study of the in-phase vortex shedding reveals| - not surprisingly - the presence of a single fundamental frequency, while the study of the transient reveals a Koopman spectrum which might indicate the existence of a bifurcation in the phase space of the flow field; this idea has been proposed before in Carini et al. (2015b). We conclude that the KMD offers a powerful framework for analysis of this ow case, and its range of applications might soon include even more complex flows.
|
Page generated in 0.0375 seconds