• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Numerical Simulation of Temperature and Velocity Profiles in a Horizontal CVD-reactor

Randell, Per January 2014 (has links)
Silicon Carbide (SiC) has the potential to significantly improve electronics. As a material, it can conduct heat better, carry larger currents and can give faster responses compared to today’s technologies. One way to produce SiC for use in electronics is by growing a thin layer in a CVD-reactor (chemical vapour deposition). A CVD-reactor leads a carrier gas with small parts of active gas into a heated chamber (susceptor). The gas is then rapidly heated to high temperatures and chemical reactions occur. These new chemical substances can then deposit on the substrate surface and grow a SiC layer. This thesis investigates the effect of different opening angles on a susceptor inlet in a SiC horizontal hot-walled CVD-reactor at Linköping University. The susceptor inlet affects both the flow and heat transfer and therefore has an impact on the conditions over the substrate. A fast temperature rise in the gas as close to the substrate as possible is desired. Even temperaturegradients vertically over the substrate and laminar flow is desired. The CVD-reactor is modeled with conjugate heat transfer using CFD simulations for three different angles of the inlet. The results show that the opening angle mainly affects the temperature gradient over the substrate and that a wider opening angle will cause a greater gradient. The opening angle will have little effect on the temperature of the satellite and substrate.
12

Elevated temperature tests of SiC experiment for MIST : KTH Student Satellite MIST

Ahlbäck, Rasmus January 2020 (has links)
Electronics today rely heavily on silicon transistors which are unsuitable for extreme environments where temperatures potentially could reach up to 500◦C. Materials other than silicon has been proposed to solve this problem, one of which is silicon carbide. Transistors made of silicon carbide can with-stand higher temperatures than its silicon counterparts and could potentially be used for exploring hostile planets such as Venus or in high temperature applications such as sensors for engines. This project is a part of KTHs student satellite initiative which will send a satellite into orbit containing several experiments. One of the experiments is the SiC in space project which is described in this thesis and is largely based on previous works in this particular project. The goal for this thesis is to ensure that the SiC in space experiment is ready for launch into orbit. This was done by conducting tests in differ-ent temperatures as well as developing software for analyzing data from the experiment as well as modifying already existing software. Based on these tests, it is concluded that the silicon carbide transistors behaves in an ex-pected way and that the platform which operates the experiment is capable of withstanding temperatures up to 100◦C. If the satellite survives launch it is most likely that the data generated by the SiC in space project will be of use for determining the suitability of silicon carbide for space applications. / Elektronik idag förlitar sig på kiseltransistorer som är olämpliga för extrema miljöer där temperaturer kan nå upp till 500◦C. Andra material än kisel har föreslagits för att lösa detta problem, där kiselkarbid är en av dem. Transistorer gjorda av kiselkarbid klarar av högre temperaturer än kiseltransistorer och kan potentiellt användas för utforskning av planeter med extrema klimat eller för applikationer vid höga temperaturer så som sensorer inne i motorer. Detta projekt är en del av KTHs student satellit som kommer sändas ut i omloppsbana runt jorden bärandes på ett antal olika experiment, däribland dem finns ”SiC in space” projektet som beskrivs i denna uppsats. Målet med arbetet i denna rapport är att säkerställa att ”SiC in space” experimentet är redo för uppskjutning till rymden. Detta gjordes genom att testa vid olika temperaturer och genom att utveckla mjukvara för analysering av experimentdata samt genom små modifieringar av mjukvara skriven i tidigare arbeten. Baserat på de tester som har genomförts dras slutsatsen att kiselkarbidtransistorn har en acceptabel karaktäristik och att plattformen som kör experimentet klarar av temperaturer upp till 100◦C. Om satelliten överlever uppskjutning ut i rymden kommer med största sannolikhet experimentet att fungera som önskat och generera data som kan påvisa ifall kiselkarbid är lämpligt för applikationer i rymden.
13

Evaluation and Development of Medium-Voltage Converters Using 3.3 kV SiC MOSFETs for EV Charging Application

Gill, Lee 05 August 2019 (has links)
The emergence of wide-bandgap-based (WBG) devices, such as silicon carbide (SiC) and gallium nitride (GaN), have unveiled unprecedented opportunities, enabling the realization of superior power conversion systems. Among the potential areas of advancement are medium-voltage (MV) and high-voltage (HV) applications, due to the growing demand for high-power-density and high-efficiency power electronics converters. These advancements have propelled a wide adoption of electric vehicles (EV), which in the future will require great improvements in the charging time of these vehicles. Thereby, this thesis attempts to address such a challenge and bring about technological improvements, enabling faster, more efficient, and more effective ways of charging an electric vehicle through the application of MV 3.3 kV SiC MOSFETs. The current fast-charging solution involves heavy and bulky MV-LV transformers, which add installation complexity for EV charging stations. However, this thesis presents an alternative power-delivery solution utilizing an MV dual-active-bridge (DAB) converter. The proposed architecture is designed to directly interface with the MV grid for high-power, fast-charging capabilities while eliminating the need for an installation of the MV-LV transformer. The MV DAB converter utilizes 3.3 kV SiC MOSFETs to realize the next 800 V EV charging system, along with an extended zero-voltage-switching (ZVS) scheme, in order to provide an efficient charging strategy across a wide range of battery voltage levels. Lastly, a detailed design comparison analysis of an MV Flyback converter, targeted for the auxiliary power supply for the proposed MV EV charging architecture, is presented. / The field of power electronics, which controls and manages the conversion of electrical energy, is an important topic of discussion, as new technologies like electric vehicles (EV) are quickly emerging and disrupting the current status-quo of vehicle-choice. In order to promote timely and extensive adoption of such an enabling EV technology, it is critical to understand the current challenges involving EV charging stations and seek out opportunities to engender future innovations. Indeed, wide-bandgap (WBG) devices, such as silicon carbide (SiC) and gallium nitride (GaN), have unveiled unprecedented opportunities in enabling the realization of superior power conversion systems. Thus, utilizing these WGB devices in EV charging applications can bring about improved design and development of EV fast chargers that are faster-charging, more efficient, and more effective. Hence, this thesis presents an opportunity in EV charging station applications with the utilization of medium-voltage SiC MOSFETs. Because the current fast-charging solution involves a heavy and bulky transformer, it adds installation complexity for EV charging stations. However, this thesis presents an alternative power-delivery solution that could potentially provide an efficient and fast-charging mechanism of EVs while reducing the size of EV chargers. All things considered, this thesis provides in-depth evaluation-studies of medium-voltage 3.3 kV SiC MOSFET-based power converters, targeted for future fast EV charging applications. The development and design of the hardware prototype is presented in this thesis, along with testing and verification of experimental results.
14

Investigation of the Symmetries of the Phonons in 4H and 6H-SiC by Infrared Absorption and Raman Spectroscopy

Ashraf, Hina January 2005 (has links)
<p>The goal of the project work has been to study the symmetry of the phonons in 4H and 6H-SiC for different measuring geometries by using two experimental techniques, Raman and infrared absorption (IR) spectroscopy, and a theoretical model. The Raman spectra were measured in different scattering configurations in order to obtain experimental data for detailed investigation of the phonon symmetries.</p><p>The gross features of the spectra obtained in different geometries can be explained using general group-theoretical arguments. Using a lattice-dynamics model, we have also calculated the angular dependence of the phonon energies near the centre of the Brillouin zone, as well as the phonon displacements in some high-symmetry directions. The theoretical results are used to interpret the Raman lines in different configurations, and it was possible to estimate that if ionicity of the bonding of 12% is taken in the theoretical model for 4H-SiC, the splitting of the polar TO mode and the shift of the polar LO mode observed in our spectra are well reproduced theoretically. It was also observed that these polar modes have to be classified as longitudinal and transversal with respect to the direction of phonon wave vector, while the rest of the modes remain longitudinal or transversal with respect to the c-axis of the crystal. The Raman lines in the case of 4H SiC have been tentatively labelled with the irreducible representations of the point group of the crystal (C6v).</p>
15

Investigation of the Symmetries of the Phonons in 4H and 6H-SiC by Infrared Absorption and Raman Spectroscopy

Ashraf, Hina January 2005 (has links)
The goal of the project work has been to study the symmetry of the phonons in 4H and 6H-SiC for different measuring geometries by using two experimental techniques, Raman and infrared absorption (IR) spectroscopy, and a theoretical model. The Raman spectra were measured in different scattering configurations in order to obtain experimental data for detailed investigation of the phonon symmetries. The gross features of the spectra obtained in different geometries can be explained using general group-theoretical arguments. Using a lattice-dynamics model, we have also calculated the angular dependence of the phonon energies near the centre of the Brillouin zone, as well as the phonon displacements in some high-symmetry directions. The theoretical results are used to interpret the Raman lines in different configurations, and it was possible to estimate that if ionicity of the bonding of 12% is taken in the theoretical model for 4H-SiC, the splitting of the polar TO mode and the shift of the polar LO mode observed in our spectra are well reproduced theoretically. It was also observed that these polar modes have to be classified as longitudinal and transversal with respect to the direction of phonon wave vector, while the rest of the modes remain longitudinal or transversal with respect to the c-axis of the crystal. The Raman lines in the case of 4H SiC have been tentatively labelled with the irreducible representations of the point group of the crystal (C6v).
16

Simulation and Electrical Evaluation of 4H-SiC Junction Field Effect Transistors and Junction Barrier Schottky Diodes with Buried Grids

Lim, Jang-Kwon January 2015 (has links)
Silicon carbide (SiC) has higher breakdown field strength than silicon (Si), which enables thinner and more highly doped drift layers compared to Si. Consequently, the power losses can be reduced compared to Si-based power conversion systems. Moreover, SiC allows the power conversion systems to operate at high temperatures up to 250 oC. With such expectations, SiC is considered as the material of choice for modern power semiconductor devices for high efficiencies, high temperatures, and high power densities. Besides the material benefits, the typeof the power device also plays an important role in determining the system performance. Compared to the SiC metal-oxide semiconductor field-effect transistor (MOSFET) and bipolar junction transistor (BJT), the SiC junction field-effect transistor (JFET) is a very promising power switch, being a voltage-controlled device without oxide reliability issues. Its channel iscontrolled by a p-n junction. However, the present JFETs are not optimized yet with regard to on-state resistance, controllability of threshold voltage, and Miller capacitance. In this thesis, the state-of-the-art SiC JFETs are introduced with buried-grid (BG) technology.The buried grid is formed in the channel through epitaxial growth and etching processes. Through simulation studies, the new concepts of normally-on and -off BG JFETs with 1200 V blocking capability are investigated in terms of static and dynamic characteristics. Additionally, two case studies are performed in order to evaluate total losses on the system level. These investigations can be provided to a power circuit designer for fully exploiting the benefit of power devices. Additionally, they can serve as accurate device models and guidelines considering the switching performance. The BG concept utilized for JFETs has been also used for further development of SiC junctionbarrier Schottky (JBS) diodes. Especially, this design concept gives a great impact on high temperature operation due to efficient shielding of the Schottky interface from high electric fields. By means of simulations, the device structures with implanted and epitaxial p-grid formations, respectively, are compared regarding threshold voltage, blocking voltage, and maximum electric field at the Schottky interface. The results show that the device with an epitaxial grid can be more efficient at high temperatures than that with an implanted grid. To realize this concept, the device with implanted grid was optimized using simulations, fabricated and verified through experiments. The BG JBS diode clearly shows that the leakage current is four orders of magnitude lower than that of a pure Schottky diode at an operation temperature of 175 oC and 2 to 3 orders of magnitude lower than that of commercial JBS diodes. Finally, commercialized vertical trench JFETs are evaluated both in simulations andexperiments, while it is important to determine the limits of the existing JFETs and study their performance in parallel operation. Especially, the influence of uncertain parameters of the devices and the circuit configuration on the switching performance are determined through simulations and experiments. / Kiselkarbid (SiC) har en högre genombrottsfältstyrka än kisel, vilket möjliggör tunnare och mer högdopade driftområden jämfört med kisel. Följaktligen kan förlusterna reduceras jämfört med kiselbaserade omvandlarsystem. Dessutom tillåter SiC drift vid temperatures upp till 250 oC. Dessa utsikter gör att SiC anses vara halvledarmaterialet för moderna effekthalvledarkomponenter för hög verkningsgrad, hög temperature och hög kompakthet. Förutom materialegenskaperna är också komponenttypen avgörande för att bestämma systemets prestanda. Jämfört med SiC MOSFETen och bipolärtransistorn i SiC är SiC JFETen en mycket lovande component, eftersom den är spänningsstyrd och saknar tillförlitlighetsproblem med oxidskikt. Dess kanal styrs an en PNövergång. Emellertid är dagens JFETar inte optimerade med hänseende till on-state resistans, styrbarhet av tröskelspänning och Miller-kapacitans. I denna avhandling introduceras state-of-the-art SiC JFETar med buried-grid (BG) teknologi. Denna åstadkommes genom epitaxi och etsningsprocesser. Medelst simulering undersöks nya concept för normally-on och normally-off BG JFETar med blockspänningen 1200 V. Såvä statiska som dynamiska egenskper undersöks. Dessutom görs två fallstudier vad avser totalförluster på systemnivå. Dessa undersökningar kan vara värdefulla för en konstruktör för att till fullo utnyttja fördelarna av komponenterna. Dessutom kan resultaten från undersökningarna användas som komponentmodeller och anvisningar vad gäller switch-egenskaper. BG konceptet som använts för JFETar har också använts för vidareutveckling av så kallade JBS-dioder. Speciellt ger denna konstruktion stora fördelar vid höga temperature genom en effektiv skärmning av Schottkyövergången mot höga elektriska fält. Genom simuleringar har komponentstrukturer med implanterade och epitaxiella grids jämförst med hänseende till tröskelspänning, genombrottspänning och maximalt elektriskt fält vid Schottky-övergången. Resultaten visar att den epitaxiella varianten kan vara mer effektiv än den implanterade vid höga temperaturer. För att realisera detta concept optimerades en komponent med implanterat grid med hjälp av simuleringar. Denna component tillverkades sedan och verifierades genom experiment. BG JBS-dioden visar tydligt att läckströmmen är fyra storleksordningar lägre än för en ren Schottky-diod vid 175 oC, och två till tre storleksordningar lägre än för kommersiella JBS-dioder. Slutligen utvärderas kommersiella vertical trench-JFETar bade genom simuleringar och experiment, eftersom det är viktigt att bestämma gränserna för existerande JFETar och studera parallelkoppling. Speciellt studeras inverkan av obestämda parametrar och kretsens konfigurering på switchegenskaperna. Arbetet utförs bade genom simuleringar och experiment. / <p>QC 20150915</p>
17

Spínaný zdroj 5,5kV/4,3kW s polovodiči z karbidu křemíku / Switching supply source 5,5kV/4,3kW with silicon-carbide semiconductors

Gabriel, Petr January 2013 (has links)
This thesis is about to introduce the development of switched power supply with output voltage of 5,5 kV and power of 4,3 kW. This thesis directly follows the outputs of two previous semester projects. Main task is about to finish the development of remaining printed circuit boards and perform launching of all parts of developed power supply. Next necessary task is about to assemble a functional prototype of the supply using the developed parts, performing a series of measurement supply’s parameters and creating of technical documentation of mechanical part. There are all stages of supply’s development included in this thesis. From the first part, that describes various types of converters, through the design of all the supply’s parts, to final implementation of functional prototype. There are the results of measurement supply’s parameters at the end of this thesis.
18

Silicon Carbide Sigma-Delta Modulatorfor High Temperature Applications

Tian, Ye January 2014 (has links)
<p>QC 20140609</p>
19

High power bipolar junction transistors in silicon carbide

Lee, Hyung-Seok January 2005 (has links)
As a power device material, SiC has gained remarkable attention to its high thermal conductivity and high breakdown electric field. SiC bipolar junction transistors (BJTs) are interesting for applications as power switch for 600 V-1200 V applications. The SiC BJT has potential for very low specific on-resistances and this together with high temperature operation makes it very suitable for applications with high power densities. One disadvantage of the BJT compared with MOSFETs and Insulated Gate Bipolar Transistors (IGBTs) is that the BJT requires a more complex drive circuit with higher power capability. For the SiC BJT to become competitive with field effect transistors, it is important to achieve high current gains to reduce the power required by the drive circuit. Although much progress in SiC BJTs has been made, SiC BJTs still have low common emitter current gain typically in the range 10-50. In this work, a record high current gain exceeding 60 has been demonstrated for a SiC BJT with a breakdown voltage of 1100 V. This result is attributed to an optimized device design, a stable device process and state-of-the-art epitaxial base and emitter layers. A new technique to fabricate the extrinsic base using epitaxial regrowth of the extrinsic base layer was proposed. This technique allows fabrication of the highly doped region of the extrinsic base a few hundred nanometers from the intrinsic region. An important factor that made removal of the regrowth difficult was that epitaxial growth of very highly doped layers has a faster lateral than vertical growth rate and the thickness of the p+ layer therefore has a maximum close to the base-emitter sidewall. A remaining p+ regrowth spacer at the edge of the base-emitter junction is proposed to explain the low current gain. Under high power operation, the SiC BJTs were strongly influenced by self-heating, which significantly limits the performance of device. The DC I-V characteristics of 4H-SiC BJTs have also been studied in the temperature range 25 °C to 300 °C. The DC current gain at 300 °C decreased 56 % compared to its value at 25 °C. Selfheating effects were quantified by extracting the junction temperature from DC measurements. To form good ohmic contacts to both n-type and p-type SiC using the same metal is one important challenge for simplifying SiC Bipolar Junction Transistor (BJT) fabrication. Ohmic contact formation in the SiC BJT process was investigated using sputter deposition of titanium tungsten to both n-type and p-type followed by annealing at 950 oC. The contacts were characterized with linear transmission line method (LTLM) structures. The n+ emitter structure and the p+ base structure contact resistivity after 30 min annealing was 1.4 x 10-4 Ωcm2 and 3.7 x 10-4 Ωcm2, respectively. Results from high-resolution transmission electron microscopy (HRTEM), suggest that diffusion of Si and C atoms into the TiW layer and a reaction at the interface forming (Ti,W)C1-x are key factors for formation of ohmic contacts. / QC 20101208
20

Einsatz von Siliziumkarbid-Bipolartransistoren in Antriebsstromrichtern zur Verlustreduktion

Barth, Henry 06 April 2022 (has links)
Stand der Technik sind IGBTs und Freilaufdioden aus Silizium (Si). Jahrzehntelange Forschung hat zu einer nahezu perfekten Technologie geführt. Jedoch werden die Fortschritte hinsichtlich der Reduzierung von Schalt- und Durchlassverlusten mit jeder neuen Generation von Si-IGBTs immer kleiner. Die anfallende Verlustleistung kann jedoch signifikant mit Leistungshalbleiter-Bauelementen aus Siliziumkarbid (SiC) und Galliumnitrid (GaN) gesenkt werden. Ziel dieser Arbeit ist es, zu untersuchen, ob und inwieweit mit diskreten SiC-Bipolartransistoren im TO-247- und SiC-Schottky-Dioden im TO-220-Gehäuse der Wirkungsgrad eines Antriebsstromrichters gesteigert werden kann. Ein Exkurs in die Siliziumkarbid-Halbleitertechnologie am Anfang soll deren Vorteile in Hinblick auf verlustärmere Leistungselektronik aufzeigen. Die Vorteile des Halbleitermaterials Siliziumkarbid werden anhand des SiC-Bipolartransistors im Vergleich zum ersten Leistungstransistor - dem Bipolartransistor aus Silizium - herausgearbeitet. Beim SiC-Bipolartransistor muss im laststromführenden Zustand ein Steuerstrom in die Basis eingeprägt werden. Damit erhöht sich der Treiberaufwand. Deshalb wird der erste Themenschwerpunkt auf den Treiber gelegt. In dieser Arbeit wurden ein einfacher und ein komplexer Treiber aufgebaut und evaluiert. Mit leichten Modifikationen wurden mit dem komplexeren Treiber auch IGBTs und SiC-MOSFETs für Vergleichsmessungen angesteuert. Ein neuer Ansatz zur Reduzierung der Treiberverlustleistung im Wechselrichter mit SiC-Bipolar-Transistoren wird vorgestellt. Er setzt beim Kommutierungsalgorithmus des Wechselrichters an. Ein wesentlicher Teil der Arbeit widmet sich der Charakterisierung des SiC-Bipolartransistors, insbesondere dem Schaltverhalten. Ein- und Ausschaltwärmen für verschiedene Arbeitspunkte werden ermittelt. Am Ende der Arbeit werden experimentelle Untersuchungen an einem SiC-Wechselrichter durchgeführt. Abschließend werden die Potenziale, die mit dem Einsatz von SiC-Bipolartransistoren verbunden sind, bewertet aber auch die Grenzen aufgezeigt.:1 Einleitung 1 2 Aufbau des SiC-Bipolartransistors 2.1 Siliziumkarbid (SiC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Eigenschaften von monokristallinem Siliziumkarbid . . . . . . . . . . 5 2.1.2 Herstellung des SiC-Wafers . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Herstellung des SiC-Bipolartransistors . . . . . . . . . . . . . . . . . . 10 2.1.4 Defekte im Siliziumkarbidkristall . . . . . . . . . . . . . . . . . . . . 11 2.2 Halbleiterphysikalische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Gesperrter pn-Übergang . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Stromführender pn-Übergang . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Bipolartransistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Aufbau und Funktionsprinzip . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Sperrfähigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Erster und zweiter Durchbruch . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Stromverstärkung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.5 Ladungsträgermodulation . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.6 Eindimensionaler spezifischer Widerstand der Driftzone . . . . . . . . 30 3 Ansteuerung des SiC-Bipolartransistors 3.1 Einführung Treiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Herausforderungen beim Ansteuern von SiC-Bipolartransistoren . . . . . . . . 34 3.3 Treiberkonzepte für SiC-Bipolartransistoren . . . . . . . . . . . . . . . . . . . 36 3.4 Konventioneller Treiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 3-Level-Treiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 Treiber für SiC-MOSFET und IGBT . . . . . . . . . . . . . . . . . . . . . . . 45 4 Reduzierung der Treiberverluste durch Einschrittkommutierung 4.1 Einschrittkommutierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Stromvorzeichenerkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Berechnung der Verlustleistungen für den eingeschalteten Zustand des SiC- Bipolartransistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Messung der Treiberverlustleistung . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Charakterisierung des SiC-Bipolartransistors 5.1 Messaufbau für Untersuchung des Ein- und Ausschaltverhaltens . . . . . . . . 55 5.2 Doppelpulsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Definition der Schaltzeiten und Schaltverlustleistung . . . . . . . . . . . . . . 57 5.4 Messung der Schaltwärme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4.1 Spannungstastköpfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4.2 Stromsensoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4.3 Zeitliche Verschiebung der Messsignale . . . . . . . . . . . . . . . . . 62 5.4.4 Vergleich von konventionellem und 3-Level-Treiber . . . . . . . . . . . 65 5.4.5 Vergleich bei unterschiedlicher Treiberspannung . . . . . . . . . . . . 66 5.4.6 Vergleich bei halb und voll bestückter Halbbrücke . . . . . . . . . . . . 68 5.4.7 Vergleich von SiC-Bipolartransistor mit SiC-MOSFET und Si-IGBT . . 69 5.4.8 Reduzierung der Spannungsspitze beim Ausschalten . . . . . . . . . . 74 5.5 Simulation des Schaltverhaltens eines SiC-Bipolartransistors . . . . . . . . . . 79 5.5.1 Schaltverhalten bei Ansteuerung mit unipolarem Treiber . . . . . . . . 79 5.5.2 Simulation des Einfluss der Emitter-Induktivität auf Schaltwärme . . . 81 5.5.3 Vergleich von Simulation und Messung . . . . . . . . . . . . . . . . . 82 5.6 Durchlassverlustleistung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 Einsatz von SiC-Bipolartransistoren im Wechselrichter 6.1 Aufbau der Wechselrichter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 Inbetriebnahme des Wechselrichters . . . . . . . . . . . . . . . . . . . . . . . 89 6.3 Überspannungen an den Motorklemmen der 1 kW-Asynchronmaschine . . . . 91 6.4 Umbau des SiC-Wechselrichters . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.5 Spannungsspitzen in der Ansteuerspannung . . . . . . . . . . . . . . . . . . . 94 6.6 Halbbrückenverluste im Leerlauf . . . . . . . . . . . . . . . . . . . . . . . . . 98 7 Zusammenfassung und Fazit 101 Literaturverzeichnis 104 A Anhang A.1 Netzliste für SiC-Bipolartransistor FSICBH057A120 . . . . . . . . . . . . . . 113 A.2 Leiterplatten für Doppelpuls-Test und SiC-Wechselrichter . . . . . . . . . . . . 114 A.3 Herleitung des Feldverlaufs in der Driftzone des gesperrten pn-Übergangs . . . 116 A.4 Herleitung des Emitterwirkungsgrads . . . . . . . . . . . . . . . . . . . . . . . 119 A.5 Herleitung des spezifischen Widerstands der Driftzone . . . . . . . . . . . . . 121 A.6 Lebenslauf von Henry Barth . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.6.1 Persönliche Angaben . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.6.2 Wissenschaftlicher Werdegang . . . . . . . . . . . . . . . . . . . . . . 124 / State-of-the-art are IGBTs and free-wheeling diodes made of silicon (Si). Decades of research have led to an almost perfect technology. Nevertheless, progress in terms of reduction of switching and forward conducting losses becomes smaller and smaller with each new generation of Si IGBTs. The resulting power dissipation, however, can be significantly reduced with power semiconductor devices made of silicon carbide (SiC) and gallium nitride (GaN). The objective of this work is to investigate whether and to what extent discrete SiC bipolar junction transistors (BJT) in TO-247 and SiC Schottky diodes in TO-220 packages can be used to increase the efficiency of a power drive inverter. At the beginning, a digression into silicon carbide semiconductor technology is intended to show its advantages in terms of lower-loss power electronics. The advantages of the semiconductor material silicon carbide are illustrated by the SiC bipolar junction transistor in comparison with the first power transistor - the silicon bipolar junction transistor. For the on-state of SiC bipolar junction transistors, a continuous current must be injected into the base. This increases the driving effort. Therefore, the first topic focuses on the driver. In this work, a simple and a complex driver were built and evaluated. With slight modifications, the more complex driver was also used to drive IGBTs and SiC-MOSFETs for comparative measurements. A new approach to reduce driver power dissipation in the inverter when using SiC bipolar junction transistors is presented. It focuses on the commutation algorithm of the inverter. A significant part of the work is devoted to the characterization of the SiC bipolar junction transistor, especially the switching behavior. Turn-on and turn-off switching losses for different operating points are determined. At the end of the work, experimental investigations are performed on a SiC inverter. Finally, the potentials associated with the use of SiC bipolar junction transistors are evaluated but also the limitations are shown.:1 Einleitung 1 2 Aufbau des SiC-Bipolartransistors 2.1 Siliziumkarbid (SiC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Eigenschaften von monokristallinem Siliziumkarbid . . . . . . . . . . 5 2.1.2 Herstellung des SiC-Wafers . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Herstellung des SiC-Bipolartransistors . . . . . . . . . . . . . . . . . . 10 2.1.4 Defekte im Siliziumkarbidkristall . . . . . . . . . . . . . . . . . . . . 11 2.2 Halbleiterphysikalische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Gesperrter pn-Übergang . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Stromführender pn-Übergang . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Bipolartransistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Aufbau und Funktionsprinzip . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Sperrfähigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Erster und zweiter Durchbruch . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Stromverstärkung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.5 Ladungsträgermodulation . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.6 Eindimensionaler spezifischer Widerstand der Driftzone . . . . . . . . 30 3 Ansteuerung des SiC-Bipolartransistors 3.1 Einführung Treiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Herausforderungen beim Ansteuern von SiC-Bipolartransistoren . . . . . . . . 34 3.3 Treiberkonzepte für SiC-Bipolartransistoren . . . . . . . . . . . . . . . . . . . 36 3.4 Konventioneller Treiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 3-Level-Treiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 Treiber für SiC-MOSFET und IGBT . . . . . . . . . . . . . . . . . . . . . . . 45 4 Reduzierung der Treiberverluste durch Einschrittkommutierung 4.1 Einschrittkommutierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Stromvorzeichenerkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Berechnung der Verlustleistungen für den eingeschalteten Zustand des SiC- Bipolartransistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Messung der Treiberverlustleistung . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Charakterisierung des SiC-Bipolartransistors 5.1 Messaufbau für Untersuchung des Ein- und Ausschaltverhaltens . . . . . . . . 55 5.2 Doppelpulsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Definition der Schaltzeiten und Schaltverlustleistung . . . . . . . . . . . . . . 57 5.4 Messung der Schaltwärme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4.1 Spannungstastköpfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4.2 Stromsensoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4.3 Zeitliche Verschiebung der Messsignale . . . . . . . . . . . . . . . . . 62 5.4.4 Vergleich von konventionellem und 3-Level-Treiber . . . . . . . . . . . 65 5.4.5 Vergleich bei unterschiedlicher Treiberspannung . . . . . . . . . . . . 66 5.4.6 Vergleich bei halb und voll bestückter Halbbrücke . . . . . . . . . . . . 68 5.4.7 Vergleich von SiC-Bipolartransistor mit SiC-MOSFET und Si-IGBT . . 69 5.4.8 Reduzierung der Spannungsspitze beim Ausschalten . . . . . . . . . . 74 5.5 Simulation des Schaltverhaltens eines SiC-Bipolartransistors . . . . . . . . . . 79 5.5.1 Schaltverhalten bei Ansteuerung mit unipolarem Treiber . . . . . . . . 79 5.5.2 Simulation des Einfluss der Emitter-Induktivität auf Schaltwärme . . . 81 5.5.3 Vergleich von Simulation und Messung . . . . . . . . . . . . . . . . . 82 5.6 Durchlassverlustleistung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 Einsatz von SiC-Bipolartransistoren im Wechselrichter 6.1 Aufbau der Wechselrichter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 Inbetriebnahme des Wechselrichters . . . . . . . . . . . . . . . . . . . . . . . 89 6.3 Überspannungen an den Motorklemmen der 1 kW-Asynchronmaschine . . . . 91 6.4 Umbau des SiC-Wechselrichters . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.5 Spannungsspitzen in der Ansteuerspannung . . . . . . . . . . . . . . . . . . . 94 6.6 Halbbrückenverluste im Leerlauf . . . . . . . . . . . . . . . . . . . . . . . . . 98 7 Zusammenfassung und Fazit 101 Literaturverzeichnis 104 A Anhang A.1 Netzliste für SiC-Bipolartransistor FSICBH057A120 . . . . . . . . . . . . . . 113 A.2 Leiterplatten für Doppelpuls-Test und SiC-Wechselrichter . . . . . . . . . . . . 114 A.3 Herleitung des Feldverlaufs in der Driftzone des gesperrten pn-Übergangs . . . 116 A.4 Herleitung des Emitterwirkungsgrads . . . . . . . . . . . . . . . . . . . . . . . 119 A.5 Herleitung des spezifischen Widerstands der Driftzone . . . . . . . . . . . . . 121 A.6 Lebenslauf von Henry Barth . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.6.1 Persönliche Angaben . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.6.2 Wissenschaftlicher Werdegang . . . . . . . . . . . . . . . . . . . . . . 124

Page generated in 0.4556 seconds