• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Musterbildung auf Si- und Ge-Oberflächen durch niederenergetische Ionenstrahlerosion: Musterbildung auf Si- und Ge-Oberflächen durch niederenergetische Ionenstrahlerosion

Teichmann, Marc 24 June 2015 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Oberflächenglättung und selbstorganisierten Musterbildung auf Si(100) und Ge(100) durch Beschuss mit niederenergetischen Edelgasionen (Ne, Ar, Kr, Xe). Die Untersuchungen wurden für Ionenenergien zwischen 400 eV und 2000 eV für Ioneneinfallswinkel von 0° bis 85° durchgeführt. Zudem wurde die zeitliche Entwicklung spezifischer Erosionsformen durch die Variation der Fluenz über zwei Größenordnungen analysiert. In den Experimenten finden sich deutliche Anzeichen einer Facettierung sowie einer Vergröberung der Strukturen mit zunehmender Erosionszeit. Diese Beobachtungen deuten darauf hin, dass von Beginn an gradientenabhängiges Zerstäuben und die Reflexion von Primärionen einen wesentlichen Einfluss auf die Strukturentwicklung haben. Die Ergebnisse werden im Kontext bestehender Musterbildungsmodelle diskutiert.
2

Scanning X-ray Diffraction Microscopy Reveals the Nanoscale Strain Landscape of Novel Quantum Devices

Corley-Wiciak, Cedric 08 May 2024 (has links)
This thesis provides also a detailed stepwise guideline on the data analysis for scanning X-ray diffraction experiments at a modern synchrotron radiation source. / Halbleiterbasierte Spin-Qubits in elektrostatischen Quantenpunkten haben vor Kurzem ein technologisches Niveau erreicht, welches lange Kohärenzzeiten und hohe Fidelitäten ermöglicht. Diese Eigenschaften sind wichtig, um eine große Anzahl von Qubits zu realisieren, welche durch adiabatische Ladungstransporte miteiander verbunden werden sollen. Allerdings können lokale Fluktuationen der Gitterverspannung im aktiven Material die Spinzustände stören, da sie das elektrostatische Potential beeinflussen. Diese Arbeit untersucht die Gitterverspannung in funktionalen Loch-Spin-Qubits und in Bauelementen für kohärenten Elektronentransport, welche auf epitaktischen Ge/Si0.20Ge0.80 und Si/Si0.66Ge0.34 Heterostrukturen mit metallischen Elektroden basieren. Die experimentelle Herausforderung besteht darin, zugleich eine hohe Sensitivität für die Gitterdeformation und eine räumliche Auflösung auf der Nanometerskala zu erreichen. Dies wird durch rasternde Röntgenbeugungsmikroskopie an der Strahllinie ID01/ESRF ermöglicht, welche eine Abbildung des Verspannungstensors mit einer lateralen Auflösung von ≤ 50 nm in bis zu 10 nm-dünnen epitaktischen Quantentöpfen ermöglicht. Die Untersuchung von vier verschiedenen Quantenbauteilen zeigt Modulationen der Gitterverspannung von 10−4 − 10−3 auf, welche durch die Elektroden und die plastische Entspannung der Heterostruktur verursacht sind. Diese Modulationen werden in räumliche Fluktuationen der Bandkantenniveaus von einer Größenordnung von mehreren meV übersetzt, die damit ähnlich zu den Abständen der orbitalen Energieniveaus der Quantenpunkte sind. Folglich stellt diese Arbeit wichtige Informationen für die Realisierung eines skalierbaren Quantenprozessors durch eine Berücksichtigung der lokalen Materialeigenschaften bereit / Semiconductor spin qubits featuring gate-defined electrostatic quantum dots have recently reached a maturity level enabling long spin coherence times and high fidelity. These characteristics are of paramount importance in the realization of large arrays of qubits interconnected by adiabatic charge shuttling. However, spin coherence can be strongly affected by local fluctuations of the lattice strain in the active material, since they impact the electrostatic potential. This work explores strain fluctuations in functional hole spin qubits and coherent electron shuttling devices based on epitaxial Ge/Si0.20Ge0.80 and Si/Si0.66Ge0.34 heterostructures with metallic electrodes. The main experimental challenge is to simultaneously achieve high sensitivity to the lattice deformation together with nanoscale spatial resolution. These requirements are met by Scanning X-ray Diffraction Microscopy at the synchotron beamline ID01/ESRF, which allows spatial mapping with ≤ 50 nm lateral resolution of the strain tensor in quantum well layers as thin as 10 nm. The analysis of four different devices highlights local modulations of the strain tensor components in the range of 10−4 − 10−3 induced by the gate electrodes and the plastic relaxation of the heterostructure. By means of band perturbation calculations, these strain fluctuations are translated into spatial modulations of the band edge energy levels. These perturbations are found to be of a few meV and thus on a similar magnitude as the orbital energy of the quantum dots. As such, this work provides important information for the realization of a scalable quantum processor with coherent interconnects by considering local material properties.
3

Statistische Untersuchung zufälliger Konfigurationen des SiGe:C Kristalls mit Dichtefunktionaltheorie

Roscher, Willi 27 June 2019 (has links)
In der vorliegenden Arbeit wurde ausgedehntes Si_1−x Ge_x für unterschiedliche Zusammensetzungen 0 ≤ x ≤ 1 untersucht. Die Untersuchungen basierten auf der DFT, wobei das Programm QuantumATK 18.06 zum Einsatz kam. Für die Korrektur der Bandlücke wurden empirische Pseudopotential Projektor Shifts verwendet [34]. Für jede untersuchte Zusammensetzung wurden 500 zufällig generierte Konfigurationen der 64-atomigen Superzelle berechnet und statistisch ausgewertet. Nach der Optimierung der Struktur erfolgte die Auswertung der Bandlücke indem über äquivalente Pfade in der Brillouinzone gemittelt wurde. Zusätzlich wurden nach dieser Art auch kleine Anteile an C untersucht. Die Ergebnisse der Berechnungen zeigen für die Bildungsenergie der Mischstrukturen positive Werte mit einem Maximum bei mittleren Zusammensetzungen. Zur Stabilitätsuntersuchung der Legierungen wurde die Gibbs-Energie berechnet. Es ergeben sich negative Werte, was die Stabilität von SiGe bestätigt. Die berechnete Gitterkonstante der relaxierten Strukturen zeigt eine leichte Überschätzung der experimentellen Werte. Die ermittelten Bandlücken reproduzieren den Übergang von Si-artigen zu Ge-artigen Bandlücken bei x = 0.85. Die Werte der Bandlücke zeigen eine gute Übereinstimmung mit dem Experiment. Aus den statistischen Untersuchungen wird deutlich, dass sowohl Bildungsenergie als auch Bandlücke Variationen von 10 % und mehr aufweisen. Es zeigt sich dadurch ein nicht zu vernachlässigender Unterschied zwischen verschie denen Konfigurationen der Superzelle, die alle eine Legierung mit gleicher Zusammensetzung beschreiben. Wird in die Strukturen Kohlenstoff eingebracht, so vergrößern sich die Variationen mit steigendem C-Anteil. Für die betrachteten kleine C-Anteile zeigt sich eine Erhöhung der Bildungsenergie und einer Verkleinerung der Gitterkonstante und der Bandlücke. Es wird deutlich, dass bereits wenig C einen Einfluss auf die wichtigen Eigenschaften der Legierung hat und für genaue Simulationen berücksichtigt werden muss. Wie die Ergebnisse zeigen, spielt die spezielle Konfiguration von Strukturen im nm-Bereich eine wichtige Rolle. Aus diesem Grund wurde im zweiten Teil der Arbeit ein Ge-Profil nachgebildet, wie es in der Basis von HBTs vorkommt. Die Ergebnisse zeigen eine Verkleinerung der Bandlücke im SiGe-Bereich, welche im Wesentlichen durch zusätzliche Valenzzustände hervorgerufen wird. Diese Zustände sind in die z-Richtung lokalisiert. Die Leitungsbandkante bleibt von der SiGe-Region nahezu unbeeinflusst. Die Vergrößerung der SiGe-Region verkleinert die Bandlücke.:Abkürzungsverzeichnis - 5 1 Motivation - 6 2 Theoretische Grundlagen der Dichtefunktionaltheorie - 8 2.1 Quantenmechanische Vielteilchensysteme - 8 2.2 Hohenberg-Kohn-Theoreme - 9 2.3 Austausch-Korrelations-Funktional und Kohn-Sham-Gleichung - 10 3 Siliziumgermanium - 12 3.1 Kristallstruktur und Gitterkonstante - 12 3.2 Bandstruktur - 13 3.2.1 Bandstruktur von Si und Ge - 13 3.2.2 Bandlücke von SiGe - 14 3.2.3 Bandlücke von SiGe:C - 15 4 Modellierung und Methoden - 16 4.1 Modellzellen - 16 4.1.1 8-atomige konventionelle Einheitszelle - 16 4.1.2 64-atomige Superzelle - 17 4.2 Bildungsenergie und Stabilität von Legierungen - 20 4.2.1 Gibbs-Energie - 21 4.3 Faltung der Bandstruktur - 22 4.4 Korrektur und Ermittlung der Bandlücke - 24 4.4.1 Korrektur der Bandlücke - 24 4.4.2 Bestimmung der Bandlücke von ungeordneten Legierungen - 26 4.5 Berechnungsverfahren der Kristallstrukturen - 28 5 Ergebnisse und Auswertung - 29 5.1 Gitterkonstante - 29 5.2 Bildungsenergie und Änderung der Gibbs-Energie - 32 5.3 Bandlücke - 36 5.3.1 Leitungsbandminimum - 38 5.3.2 Bildungsenergie - 40 5.4 Bandstruktur - 42 6 Anwendung für die Basis von HBTs - 44 6.1 Modellierung - 45 6.2 Ergebnisse - 46 7 Zusammenfassung und Ausblick Literatur - 49 Danksagung - 53 Selbstständigkeitserklärung - 54
4

Self-organized nanostructures by heavy ion irradiation: defect kinetics and melt pool dynamics

Böttger, Roman 16 January 2014 (has links)
Self-organization is a hot topic as it has the potential to create surface patterns on the nanoscale avoiding cost-intensive top-down approaches. Although chemists have promising results in this area, ion irradiation can create self-organized surface patterns in a more controlled manner. Different regimes of pattern formation under ion irradiation were described so far by 2D models. Here, two new regimes have been studied experimentally, which require modeling in 3D: subsurface point defect kinetics as well as ion impact-induced melt pool formation. This thesis deals with self-organized pattern formation on Ge and Si surfaces under normal incidence irradiation with heavy monatomic and polyatomic ions of energies up to several tens of keV. Irradiation has been performed using liquid metal ion sources in a focused ion beam facility with mass-separation as well as by conventional broad beam ion implantation. Irradiated samples have been analyzed mainly by scanning electron microscopy. Related to the specific irradiation conditions, investigation and discussion of pattern formation has been divided into two parts: (i) formation of Ge morphologies due to point defect kinetics and (ii) formation of Ge and Si morphologies due to melt pool dynamics. Point defect kinetics dominates pattern formation on Ge under irradiation with monatomic ions at room temperature. Irradiation of Ge with Bi and Ge ions at fluences up to 10^17 cm^(-2) has been performed. Comprehensive studies show for the first time that morphologies change from flat surfaces over hole to nanoporous, sponge-like patterns with increasing ion energy. This study is consistent with former irradiations of Ge with a few ion energies. Based on my studies, a consistent, qualitative 3D model of morphology evolution has been developed, which attributes the ion energy dependency of the surface morphology to the depth dependency of point defect creation and relaxation. This model has been proven by atomistic computer experiments, which reproduce the patterns found in real irradiation experiments. At extremely high energy densities deposited by very heavy ions another mechanism dominates pattern formation. The formation of Ge and Si dot patterns by very heavy, monatomic and polyatomic Bi ion irradiation has been studied in detail for the first time. So far, this formation of pronounced dot pattern cannot be explained by any model. Comprehensive, experimental studies have shown that pattern formation on Ge is related to extremely high energy densities deposited by each polyatomic ion locally. The simultaneous impact of several atoms leads to local energy densities sufficient to cause local melting. Heating of Ge substrates under ion irradiation increases the achievable energy density in the collision cascade substantially. This prediction has been confirmed experimentally: it has been found that the threshold for nanomelting can be lowered by substrate heating, which allows pattern formation also under heavy, monatomic ion irradiation. Extensive studies of monatomic Bi irradiation of heated Ge have shown that morphologies change from sponge-like over highly regular dot patterns to smooth surfaces with increasing substrate temperature. The change from sponge-like to dot pattern is correlated to the melting of the ion collision cascade volume, with energy densities sufficient for melt pool formation at the surface. The model of pattern formation on Ge due to extremely high deposited energy densities is not specific to a single element. Therefore, Si has been studied too. Dot patterns have been found for polyatomic Bi ion irradiation of hot Si, which creates sufficiently high energy densities to allow ion impact-induced melt pool formation. This proves that pattern formation by melt pool formation is a novel, general pattern formation mechanism. Using molecular dynamics simulations of project partners, the correlation between dot patterning and ion impact-induced melt pool formation has been proven. The driving force for dot pattern formation due to high deposited energy densities has been identified and approximated in a first continuum description.
5

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen: Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 04 February 2011 (has links)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor

Page generated in 0.0631 seconds