• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Silicon Nanowires for Biosensor Applications

Zörgiebel, Felix 23 November 2017 (has links) (PDF)
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung und technischen Entwicklung von Siliziumnanodrähten als Sensoren für zukünftige medizinische Anwendungen. Im Gegensatz zu Sensoren die auf dotierten Nanodrähten basieren, wurden hier undotierte Nanodrähte untersucht, die mit geringerem Produktionsaufwand auskommen und mittels Schottky-Barrieren als Feldeffekttransistoren nutzbar sind. Deren Eigenschaften wurden im Hinblick auf pH und Biosensorik theoretisch und experimentell untersucht, sowie technisch in ein lab-on-chip sowie ein kompaktes Multiplexer-Messgerät integriert. In einem zweiten, separaten Teil wurden die Eigenschaften undotierter Nanodrähte für die optische Spektroskopie theoretisch modelliert. Die Inhalte beider Teile werden im folgenden kurz zusammengefasst. Um die elektrischen Sensoreigenschaften der Siliziumnanodrähte zu untersuchen, wurden zunächst Computermodelle der Drähte erstellt, mit deren Hilfe der Elektronentransport in flüssiger Umgebung quantenmechanisch modelliert wurde. Die dafür erstellten Modellvorstellungen waren für die sich daran anschließenden experimentellen Untersuchungen des Rauschverhaltens, der pH-Sensitivität sowie der Biosensoreigenschaften sehr vorteilhaft. Mit Hilfe einer neu entwickelten Messmethode konnte der optimale Arbeitspunkt der Sensoren ermittelt werden, sowie die hohe Sensorqualität mittels einer empirischen mathematischen Beschreibung des zu erwartenden Sensorsignals eingeordnet werden. Weiterhin wurden für die Medizintechnik relevante Messungen von Thrombin durchgeführt. Damit ist für den hier beschriebenen Sensortyp ein proof-of-concept für neuartige medizinische Messelemente gelungen. Um die kleinen Abmessungen der Sensoren darüber hinaus technisch nutzbar zu machen, wurden sie in ein lab-on-chip System integriert, in welchem sie als Sensoren für den pH-Wert sowie die ionische Konzentration in Nanoliter-Tropfen verwendet wurden. Desweiteren wurde in Kooperation mit dem Institut für Aufbau- und Verbindungstechnik ein portables Messgerät entwickelt, welches die parallele Messung mehrerer Nanodrahtsensoren ermöglicht. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung zur Eignung von Silizium-Nanodrähten als Messsonden (Probes) für die optische Spektroskopie vorgestellt. Dazu wurde eine Methode entwickelt mittels derer es möglich ist, Raman und Infrarotspektren von Nanostrukturen mittels Molekulardynamik zu berechnen. Die Methode wurde auf undotierte Silizium-Nanodrähte augewendet und zeigt, dass die Oberflächenbeschaffenheit der Drähte die optischen Spektren entscheidend beeinflusst. Damit konnte die Relevanz von Halbeiter-Nanostrukturen auch für Anwendungen in der optischen Spektroskopie gezeigt werden. / Nanostructures have attracted great attention not only in scientific research, but also in engineering applications during the last decades. Especially in combination with biological systems, whose complex function is controlled from nanoscale building blocks, nanotechnological developments find a huge field of applications in the medical sector. This work is dedicated to the functional understanding and technical implementation of silicon nanowires for future medical sensor applications. In contrast to doped silicon nanowire based sensors, this work is focussed on pure, undoped silicon nanowires, which have lower demands on production techniques and use Schottky-barriers as electric field detectors. The pH and biosensing capabilities of such undoped silicon nanowire field effect transistors were investigated theoretically and experimentally and further integrated in a lab-on-a-chip device as well as a small-scale multiplexer measurement device. In a second separate part, the optical sensing properties of undoped silicon nanowires were theoretically modeled. The main contents of both parts are shortly described in the following paragraphs. A multiscale model of silicon nanowire FETs to describe the charge transport in liquid surrounding in a quantum mechanical framework was developed to investigate the sensing properties of the nanowire sensors in general. The model set the basis for the understanding of the subsequent experimental investigations of noise characterization, pH sensitivity and biosensing properties. With the help of a novel gate sweeping measurement method the optimal working point of the sensors was determined and the high sensor quality could be quantified in terms of an empirical mathematical model. The sensor was then used for measurements of medically relevant concentrations of the Thrombin protein, providing a proof-of-concept for medical applications for our newly developed sensor. In order to exploit the small size of our sensors for technical applications we integrated the devices in lab-on-a-chip system with a microfluidic droplet generation module. There they were used to measure the pH and ionic concentration of droplets. Finally a portable multiplex measurement device for silicon nanowire sensors as well as other ion sensitive FETs was developed in cooperation with the IAVT at TU Dresden (Institut für Aufbau- und Verbindungstechnik). The second part of this thesis investigates the usability of silicon nanowires for optical sensor applications from a theoretical point of view. Therefore a method for the extraction of Raman and Infrared spectra from molecular dynamics simulations was developed. The method was applied to undoped silicon nanowires and shows that the surface properties of the nanowires has a significant effect on optical spectra. These results demonstrate the relevance of semiconductor nanostructures for applications in optical spectroscopy.
2

Silicon Nanowires for Biosensor Applications

Zörgiebel, Felix 10 November 2017 (has links)
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung und technischen Entwicklung von Siliziumnanodrähten als Sensoren für zukünftige medizinische Anwendungen. Im Gegensatz zu Sensoren die auf dotierten Nanodrähten basieren, wurden hier undotierte Nanodrähte untersucht, die mit geringerem Produktionsaufwand auskommen und mittels Schottky-Barrieren als Feldeffekttransistoren nutzbar sind. Deren Eigenschaften wurden im Hinblick auf pH und Biosensorik theoretisch und experimentell untersucht, sowie technisch in ein lab-on-chip sowie ein kompaktes Multiplexer-Messgerät integriert. In einem zweiten, separaten Teil wurden die Eigenschaften undotierter Nanodrähte für die optische Spektroskopie theoretisch modelliert. Die Inhalte beider Teile werden im folgenden kurz zusammengefasst. Um die elektrischen Sensoreigenschaften der Siliziumnanodrähte zu untersuchen, wurden zunächst Computermodelle der Drähte erstellt, mit deren Hilfe der Elektronentransport in flüssiger Umgebung quantenmechanisch modelliert wurde. Die dafür erstellten Modellvorstellungen waren für die sich daran anschließenden experimentellen Untersuchungen des Rauschverhaltens, der pH-Sensitivität sowie der Biosensoreigenschaften sehr vorteilhaft. Mit Hilfe einer neu entwickelten Messmethode konnte der optimale Arbeitspunkt der Sensoren ermittelt werden, sowie die hohe Sensorqualität mittels einer empirischen mathematischen Beschreibung des zu erwartenden Sensorsignals eingeordnet werden. Weiterhin wurden für die Medizintechnik relevante Messungen von Thrombin durchgeführt. Damit ist für den hier beschriebenen Sensortyp ein proof-of-concept für neuartige medizinische Messelemente gelungen. Um die kleinen Abmessungen der Sensoren darüber hinaus technisch nutzbar zu machen, wurden sie in ein lab-on-chip System integriert, in welchem sie als Sensoren für den pH-Wert sowie die ionische Konzentration in Nanoliter-Tropfen verwendet wurden. Desweiteren wurde in Kooperation mit dem Institut für Aufbau- und Verbindungstechnik ein portables Messgerät entwickelt, welches die parallele Messung mehrerer Nanodrahtsensoren ermöglicht. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung zur Eignung von Silizium-Nanodrähten als Messsonden (Probes) für die optische Spektroskopie vorgestellt. Dazu wurde eine Methode entwickelt mittels derer es möglich ist, Raman und Infrarotspektren von Nanostrukturen mittels Molekulardynamik zu berechnen. Die Methode wurde auf undotierte Silizium-Nanodrähte augewendet und zeigt, dass die Oberflächenbeschaffenheit der Drähte die optischen Spektren entscheidend beeinflusst. Damit konnte die Relevanz von Halbeiter-Nanostrukturen auch für Anwendungen in der optischen Spektroskopie gezeigt werden.:I Introduction: Sensing with Nanostructures 1 Introduction 2 Field effect transistors as electronic sensor elements 3 Packaging: Connecting Nano and Macro 4 Nanostructures as transducers in optical spectroscopy II Electronic sensing with Schottky Barrier silicon nanowires 5 Schottky-Barrier silicon nanowire field effect transistors 6 ISFET measurement principles 7 pH and Biosensing with silicon nanowires 8 Thrombin sensing 9 Silicon nanowire FETs in a Lab-on-a-Chip device 10 Multiplexer sensing platform 11 Experimental methods III Simulating optical spectra of silicon nanowires 12 Theoretical fundamentals 13 Computational Methods 14 Results 15 Bibliography 16 Anhang / Nanostructures have attracted great attention not only in scientific research, but also in engineering applications during the last decades. Especially in combination with biological systems, whose complex function is controlled from nanoscale building blocks, nanotechnological developments find a huge field of applications in the medical sector. This work is dedicated to the functional understanding and technical implementation of silicon nanowires for future medical sensor applications. In contrast to doped silicon nanowire based sensors, this work is focussed on pure, undoped silicon nanowires, which have lower demands on production techniques and use Schottky-barriers as electric field detectors. The pH and biosensing capabilities of such undoped silicon nanowire field effect transistors were investigated theoretically and experimentally and further integrated in a lab-on-a-chip device as well as a small-scale multiplexer measurement device. In a second separate part, the optical sensing properties of undoped silicon nanowires were theoretically modeled. The main contents of both parts are shortly described in the following paragraphs. A multiscale model of silicon nanowire FETs to describe the charge transport in liquid surrounding in a quantum mechanical framework was developed to investigate the sensing properties of the nanowire sensors in general. The model set the basis for the understanding of the subsequent experimental investigations of noise characterization, pH sensitivity and biosensing properties. With the help of a novel gate sweeping measurement method the optimal working point of the sensors was determined and the high sensor quality could be quantified in terms of an empirical mathematical model. The sensor was then used for measurements of medically relevant concentrations of the Thrombin protein, providing a proof-of-concept for medical applications for our newly developed sensor. In order to exploit the small size of our sensors for technical applications we integrated the devices in lab-on-a-chip system with a microfluidic droplet generation module. There they were used to measure the pH and ionic concentration of droplets. Finally a portable multiplex measurement device for silicon nanowire sensors as well as other ion sensitive FETs was developed in cooperation with the IAVT at TU Dresden (Institut für Aufbau- und Verbindungstechnik). The second part of this thesis investigates the usability of silicon nanowires for optical sensor applications from a theoretical point of view. Therefore a method for the extraction of Raman and Infrared spectra from molecular dynamics simulations was developed. The method was applied to undoped silicon nanowires and shows that the surface properties of the nanowires has a significant effect on optical spectra. These results demonstrate the relevance of semiconductor nanostructures for applications in optical spectroscopy.:I Introduction: Sensing with Nanostructures 1 Introduction 2 Field effect transistors as electronic sensor elements 3 Packaging: Connecting Nano and Macro 4 Nanostructures as transducers in optical spectroscopy II Electronic sensing with Schottky Barrier silicon nanowires 5 Schottky-Barrier silicon nanowire field effect transistors 6 ISFET measurement principles 7 pH and Biosensing with silicon nanowires 8 Thrombin sensing 9 Silicon nanowire FETs in a Lab-on-a-Chip device 10 Multiplexer sensing platform 11 Experimental methods III Simulating optical spectra of silicon nanowires 12 Theoretical fundamentals 13 Computational Methods 14 Results 15 Bibliography 16 Anhang
3

Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels Molekulardynamik

Heinze, Georg 04 January 2018 (has links) (PDF)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses. In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase. Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.
4

Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels Molekulardynamik

Heinze, Georg 24 July 2017 (has links)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses. In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase. Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.:Abbildungsverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Einleitung 2 Einführung zu Siliziumnanodrähten 2.1 Kristallstuktur von Silizium 2.2 Ideale Siliziumnanodrähte 2.3 Herstellung von Siliziumnanodrähten 3 Grundlagen der Molekulardynamik 3.1 Newtonsche Axiome 3.2 Einige grundlegende Begriffe der statistischen Physik 3.3 Molekulardynamik 3.4 Reaktives Kraftfeld 3.5 Methoden zur Beschreibung des Ladungstransfers 3.6 Thermostat und Barostat 3.7 Large-scale Atomic/Molecular Massively Parallel Simulator 4 Entwicklung des Modellsystems 4.1 Ausgangsstruktur 4.2 Vorrelaxation 4.3 Ablauf der Oxidation 4.4 Verwendeter ReaxFF-Parametersatz 4.5 Optimierung der Zeitschrittweite 4.5.1 Modellsystem, Relaxation und Oxidation 4.5.2 Festlegung der Zeitschrittweite 4.6 Optimierung der Systemlänge 4.6.1 Modellsystem, Relaxation und Oxidation 4.6.2 Festlegung der Systemlänge 4.7 Einfluss des globalen, instantanen Ladungstransfers auf die Simulation 4.7.1 Festlegung des Einsetzabstands 4.7.2 Vergleich mit Daten von Khalilov et al. 5 Variation von System- und Einsetztemperatur sowie Drahtorientierung 5.1 Variation von System- und Einsetztemperatur 5.1.1 Untersuchung des Oxidationsgrads 5.1.2 Untersuchung von Dichten und Grenzflächenpositionen 5.2 Variation der Drahtorientierung 5.2.1 Untersuchung des Oxidationsgrads 5.2.2 Untersuchung von Dichten und Grenzflächenpositionen 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Literaturverzeichnis
5

Molekulardynamische Simulation der Oxidation dünner Siliziumnanodrähte: Einfluss von Draht- und Prozessparametern auf die Struktur

Heinze, Georg 28 January 2019 (has links)
Siliziumnanodrähte (SiNWs) bieten aufgrund ihrer exzellenten elektrostatischen Kontrollierbarkeit eine gute Grundlage für die Entwicklung neuartiger Bauelemente, wie rekonfigurierbarer Feldeffekttransistoren (RFETs). Da SiNWs durch die Oxidation gezielt verzerrt werden können und diese Verzerrung die Bandstruktur des Siliziums verändert, bietet der Oxidationsprozess eine Möglichkeit, die Leitungseigenschaften der RFETs zu modulieren und eine symmetrische Transfercharakteristik zu erhalten. Die Untersuchung von SiNWs mit Durchmessern im einstelligen Nanometerbereich bedarf eines atomistischen Ansatzes. In der vorliegenden Arbeit wird mit einem reaktiven Kraftfeld die initiale Phase der Oxidation dünner SiNWs molekulardynamisch simuliert. Gegenstand der Untersuchungen sind die Temperaturabhängigkeit der Oxidation von <110>-SiNWs mit Anfangsradien von 10.2 Å sowie das Oxidationsverhalten von <110>- und <100>-SiNWs mit Anfangsradien von 5.1 Å. Dabei wird neben dem Sauerstoffanteil im Simulationssystem und der radial aufgelösten Dichte auch das radial aufgelöste Verhältnis zwischen Sauerstoff- und Siliziumatomen während der gesamten Simulationsdauer untersucht und ein Zusammenhang zur Dichte festgestellt. Darüber hinaus wird bei 300 K erstmals eine Analyse der Verzerrungsentwicklung während der initialen Oxidationsphase durchgeführt, bei der sich sowohl für <110>-SiNWs als auch für <100>-SiNWs eine tensile Verzerrung im unoxidierten Drahtkern einstellt. Wie eine Analyse der partiellen radialen Verteilungsfunktion zeigt, kommt es zu dieser Verzerrung, weil während der Oxidation die Grundstruktur des Siliziums im Oxid erhalten bleibt, durch die Einlagerung des Sauerstoffs allerdings der Bindungsabstand erhöht wird. Dieser erhöhte Bindungsabstand wird durch Bindungen zu Siliziumatomen im Oxid auch Siliziumatomen im unoxidierten Kern aufgezwungen.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1. Einleitung 2. Theoretische Grundlagen 2.1. Molekulardynamik 2.2. Siliziumnanodrähte 2.3. Verzerrung und Verspannung 3. Modellsystem 3.1. Ausgangsstruktur 3.2. Vorrelaxation 3.3. Ablauf der Oxidation 4. Untersuchungsmethoden 4.1. Sauerstofffluenz, Oxidationsgrad und Oxidationsrate 4.2. Massendichte und Siliziumanteil 4.3. Radiale Verteilungsfunktion 4.4. Verzerrung 4.4.1. <110>-Draht 4.4.2. <100>-Draht 5. Ergebnisse und Diskussion 5.1. Festlegung des Einsetzintervalls 5.2. Temperaturvariation 5.2.1. Oxidationsgrad 5.2.2. Siliziumanteil 5.2.3. Massendichte 5.2.4. Radiale Verteilungsfunktion 5.3. Radius- und Orientierungsvariation 5.4. Verzerrung 6. Zusammenfassung und Ausblick 6.1. Zusammenfassung 6.2. Ausblick A. Festlegung des Einsetzintervalls Literaturverzeichnis

Page generated in 0.0523 seconds