• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 12
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An Analysis of Wireless High-speed Data Services for Cellular CDMA Systems

Chan, Kwong Hang Kevin January 2002 (has links)
The interest in the development of wireless high-speed data services is in response to the strong market demand for high-speed wireless Internet access. Current standards aim at delivering a peak data rate greater than 2Mbps on the forward link. Since data services and voice services are fundamentally different, new concepts were introduced in the design of the forward data channel. In addition, methods of evaluating the performance of a cellular CDMA system have to be revisited. This thesis proposes a method which can be used to find the forward link peak and average data rates, throughput and coverage of a cellular CDMA system which is capable of delivering high-speed wireless data. A summary of changes in design philosophy and recent advances in technologies which enable high-speed wireless data delivery are presented. The proposed method takes into account major aspects commonly found in the forward data channel and applies the generalized Shannon capacity formula for multi-element antenna (MEA) systems. The analysis focuses on the physical layer and is flexible enough to be adapted to various propagation environments, antenna configurations, multicode allocations, user distributions and cell site configurations. Sample numerical results for various multicode allocations are shown using a system model with two-tier interfering cells with one transmit antenna and two receive antennas operating under a frequency selective slow fading channel with propagation environment described by the Recommendation ITU-R M. 1225 indoor office, outdoor to indoor and pedestrian and vehicular test environments. Different transmit / receive antenna configurations and multicode allocations and their impact on the average data rate is also explored.
22

Ασύρματη μετάδοση με χρήση πολλαπλών κεραιών

Οικονομοπούλου, Στέλλα 09 January 2012 (has links)
Στην παρούσα διπλωματική εργασία εξετάζονται τεχνικές μετάδοσης σε ασύρματα συστήματα επικοινωνιών και μελετάται η επίδοσή τους με χρήση προσομοιώσεων. Κύριος στόχος είναι η παρουσίαση και η μελέτη τεχνικών ποικιλότητας, που χρησιμοποιούνται στα ασύρματα συστήματα επικοινωνιών, ώστε να αντιμετωπιστούν οι διαλείψεις του καναλιού και να βελτιωθεί η αξιοπιστία της επικοινωνίας. Αρχικά, εισάγεται το μοντέλο του ασύρματου καναλιού ως ένα σύστημα και εξετάζεται το φαινόμενο των διαλείψεων που επηρεάζει τη διάδοση του σήματος. Παρουσιάζονται, επίσης, πιθανοτικά μοντέλα του ασύρματου καναλιού, τα οποία χρησιμοποιούνται για την πρόβλεψη της συμπεριφοράς του καναλιού και για τη σχεδίαση ασύρματων συστημάτων. Στη συνέχεια, παρουσιάζονται συνοπτικά διάφορες τεχνικές διαμόρφωσης και μελετάται, μέσω προσομοιώσεων, η απόδοση ασύρματων συστημάτων που χρησιμοποιούν μία κεραία σε πομπό και δέκτη (SISO) για μετάδοση μέσω καναλιού Λευκού Προσθετικού Γκαουσιανού Θορύβου (AWGN) και μέσω καναλιού Rayleigh επίπεδων διαλείψεων. Ακολουθεί η παρουσίαση και η μελέτη τεχνικών ποικιλότητας (diversity), που εφαρμόζονται είτε στον πομπό συστημάτων με πολλές κεραίες στον πομπό και μία κεραία στο δέκτη (MISO) είτε στο δέκτη συστημάτων με μία κεραία στον πομπό και πολλές κεραίες στο δέκτη (SIMO) και έχουν ως στόχο τη βελτίωση της επίδοσης των συστημάτων σε περιβάλλοντα διαλείψεων. Συγκεκριμένα, μελετώνται οι τεχνικές Maximal Ratio Combining (MRC) και selective combining για χρήση σε δέκτες συστημάτων SIMO, καθώς και η τεχνική Maximal Ratio Transmission (MRT) και ο χωροχρονικός κώδικας Alamouti για χρήση σε πομπούς συστημάτων MISO. H εργασία ολοκληρώνεται με τη σύγκριση των τεχνικών ως προς το κέρδος ισχύος (power gain) και το κέρδος ποικιλότητας (diversity gain) που επιτυγχάνουν. / The topic of this thesis is the study of transmission techniques for wireless communication systems and the evaluation of their performance using simulations. The main goal is to present and study diversity techniques, which are employed in wireless communications systems in order to address the effects of channel fading and improve the reliability of communication. First, the system model of the wireless channel is introduced, and the impact on the fading effect on the propagation of the signals is examined. Moreover, probabilistic models are presented for the wireless channel, which are used for the prediction of the behavior of the channel and for the design of wireless communication systems. Then modulation techniques are presented and their performance is evaluated for wireless systems that employ one antenna at both the transmitter and the receiver (SISO) and transmit over the Additive White Gaussian Noise (AWGN) channel and the flat-fading Rayleigh channel. The study of SISO systems is followed by the presentation of diversity techniques that are used either at the transmitter of systems with many antennas at the transmitter and one antenna at the receiver (MISO) or at the receiver of systems with a single antenna at the transmitter and many antennas at the receiver (SIMO). Diversity techniques aim at improving the performance of wireless systems in fading environments. More precisely, the Maximal Ratio Combining (MRC) and the Selective Combining technique are studied for use at receivers of SIMO systems, whereas the Maximal Ratio Transmission (MRT) technique and the Alamouti space-time code are considered for transmitters of MISO systems. The thesis concludes with a comparison of the power gain and the diversity gain that is achieved by the diversity techniques.
23

Formulación material y espacial del modelo geometricamente exacto de piezas alargadas

Lázaro Fernández, Carlos Manuel 06 May 2008 (has links)
El análisis de la respuesta mecánica de piezas alargadas que experimentan grandes desplazamientos y rotaciones constituye un campo en el que se han producido avances significativos en las tres últimas décadas, tanto desde el punto de vista de la formulación de modelos físicos como de la búsqueda de soluciones numéricas. El ámbito de aplicación de este tipo de modelos se separa quizás del abanico de problemas de los que tradicionalmente se ha ocupado la ingeniería civil, aproximándose más a situaciones propias de otras disciplinas, como la aeronáutica, la robótica o la biomecánica. Dentro de la variedad de modelos en una dimensión desarrollados para el análisis no lineal de piezas alargadas, el propuesto por Simó como extensión del trabajo de Reissner es capaz de reproducir rotaciones arbitrariamente grandes de las secciones transversales. Su sencillez conceptual y la potencia de las soluciones numéricas basadas en él lo hanconvertido en referencia obligada y punto de partida de muchas investigaciones recientes. El propio Simó introdujo la denominación de \emph{modelo geométricamente exacto de piezas alargadas} para referirse a él. No obstante, el modelo de Reissner--Simó no está libre de dificultades. Éstas derivan principalmente del tratamiento exacto de las rotaciones, que exige trabajar en un espacio de configuraciones no lineal ni conmutativo. Esta tesis examina los fundamentos del modelo geométricamente exacto y su conexión con la teoría no lineal de la elasticidad. La relación entre variables materiales y espaciales a través de la transformación definida por la rotación de cada sección establece el método de análisis. En un primer paso se ha desarrollado completamente la cinemática del modelo y las ecuaciones de campo en sus dos facetas --material y espacial--, lo que ha permitido sistematizar el proceso deductivo y aportar algunos resultados teóricos novedosos. El análisis del problema desde el punto de vista variacional ha puesto de manifiesto las conexiones / Lázaro Fernández, CM. (2005). Formulación material y espacial del modelo geometricamente exacto de piezas alargadas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1872 / Palancia
24

Metody a systémy prostorové identifikace RFID etiket / Spatial Identification Methods and Systems for RFID Tags

Povalač, Aleš January 2013 (has links)
Disertační práce je zaměřena na metody a systémy pro měření vzdálenosti a lokalizaci RFID tagů pracujících v pásmu UHF. Úvod je věnován popisu současného stavu vědeckého poznání v oblasti RFID prostorové identifikace a stručnému shrnutí problematiky modelování a návrhu prototypů těchto systémů. Po specifikaci cílů disertace pokračuje práce popisem teorie modelování degenerovaného kanálu pro RFID komunikaci. Detailně jsou rozebrány metody měření vzdálenosti a odhadu směru příchodu signálu založené na zpracování fázové informace. Pro účely lokalizace je navrženo několik scénářů rozmístění antén. Modely degenerovaného kanálu jsou simulovány v systému MATLAB. Významná část této práce je věnována konceptu softwarově definovaného rádia (SDR) a specifikům jeho adaptace na UHF RFID, která využití běžných SDR systémů značně omezují. Diskutována je zejména problematika průniku nosné vysílače do přijímací cesty a požadavky na signál lokálního oscilátoru používaný pro směšování. Prezentovány jsou tři vyvinuté prototypy: experimentální dotazovač EXIN-1, měřicí systém založený na platformě Ettus USRP a anténní přepínací matice pro emulaci SIMO systému. Závěrečná část je zaměřena na testování a zhodnocení popisovaných lokalizačních technik, založených na měření komplexní přenosové funkce RFID kanálu. Popisuje úzkopásmové/širokopásmové měření vzdálenosti a metody odhadu směru signálu. Oba navržené scénáře rozmístění antén jsou v závěru ověřeny lokalizačním měřením v reálných podmínkách.
25

Optimisation of adaptive localisation techniques for cognitive radio

Thomas, Robin Rajan 06 August 2012 (has links)
Spectrum, environment and location awareness are key characteristics of cognitive radio (CR). Knowledge of a user’s location as well as the surrounding environment type may enhance various CR tasks, such as spectrum sensing, dynamic channel allocation and interference management. This dissertation deals with the optimisation of adaptive localisation techniques for CR. The first part entails the development and evaluation of an efficient bandwidth determination (BD) model, which is a key component of the cognitive positioning system. This bandwidth efficiency is achieved using the Cramer-Rao lower bound derivations for a single-input-multiple-output (SIMO) antenna scheme. The performances of the single-input-single-output (SISO) and SIMO BD models are compared using three different generalised environmental models, viz. rural, urban and suburban areas. In the case of all three scenarios, the results reveal a marked improvement in the bandwidth efficiency for a SIMO antenna positioning scheme, especially for the 1×3 urban case, where a 62% root mean square error (RMSE) improvement over the SISO system is observed. The second part of the dissertation involves the presentation of a multiband time-of arrival (TOA) positioning technique for CR. The RMSE positional accuracy is evaluated using a fixed and dynamic bandwidth availability model. In the case of the fixed bandwidth availability model, the multiband TOA positioning model is initially evaluated using the two-step maximum-likelihood (TSML) location estimation algorithm for a scenario where line-of-sight represents the dominant signal path. Thereafter, a more realistic dynamic bandwidth availability model has been proposed, which is based on data obtained from an ultra-high frequency spectrum occupancy measurement campaign. The RMSE performance is then verified using the non-linear least squares, linear least squares and TSML location estimation techniques, using five different bandwidths. The proposed multiband positioning model performs well in poor signal-to-noise ratio conditions (-10 dB to 0 dB) when compared to a single band TOA system. These results indicate the advantage of opportunistic TOA location estimation in a CR environment. / Dissertation (MEng)--University of Pretoria, 2012. / Electrical, Electronic and Computer Engineering / unrestricted
26

Kmitočtové filtry s proudovými aktivními prvky / Frequency Filters with Current Active Elements

Jeřábek, Jan January 2011 (has links)
This doctoral thesis is focused mainly on research of new current active elements and their applications in frequency filters suitable for current-mode. Work is focused on design of new filtering structures suitable for traditional single-ended signal processing and also on structures suitable for fully-differential applications. The thesis contains three designed general conceptions of KHN-type second-order filters. Adjustability of quality factor and pole frequency is provided by controllable current amplifiers that are placed properly in designed structures. Structures also contain second-generation current conveyors, multiple-output current followers, transconductance amplifiers and their fully-differential equivalents. There are lot of possible solutions that could be obtained from general structures, some of them are presented in the work. The thesis also presents several multifunctional and also single-purpose filtering structures of second-order and two variants of n-th order synthetic elements which are suitable to realize higher order filters both in single ended and fully differential type. In each case, functionality of new solutions is verified by simulations and in several cases also by real measurement.
27

Adaptive Control Of A General Class Of Finite Dimensional Stable LTI Systems

Shankar, H N 03 1900 (has links)
We consider the problem of Adaptive Control of finite-dimensional, stable, Linear Time Invariant (LTI) plants. Amongst such plants, the subclass regarding which an upper bound on the order is not known or which are known to be nonminimum phase (zeros in the unstable region) pose formidable problems in their own right. On one hand, if an upper bound on the order of the plant is not known, adaptive control usually involves some form of order estimation. On the other hand, when the plant is allowed to be either minimum phase or nonminimum phase, the adaptive control problem, as is well-known, becomes considerably-less tractable. In this study, the class of unknown plants considered is such that no information is available on the upper bound of the plant order and, further, the plant may be either minimum phase or nonminimum phase. Albeit known to be stable, such plants throw myriads of challenges in the context of adaptive control. Adaptive control involving such plants has been addressed [79] in a Model Reference Adaptive Control (MRAC) framework. There, the inputs and outputs of the unknown plant are the only quantities available by measurement in terms of which any form of modeling of the unknown plant may be made. Inputs to the reference model have been taken from certain restricted classes of bounded signals. In particular, the three classes of inputs considered are piecewise continuous bounded functions which asymptotically approach • a nonzero constant, • a sinusoid, and • a sinusoid with a nonzero shift. Moreover, the control law is such that adaptation is carried out at specific instants separated by progressively larger intervals of time. The schemes there have been proved to be e-optimal in the sense of a suitably formulated optimality criterion. If, however, the reference model inputs be extended to the class of piecewise continuous bounded functions, that would compound the complexity of the adaptive control problem. Only one attempt [78] in adaptive control in such a setting has come to our notice. The problem there has been tackled by an application of the theory of Pade Approximations to time moments of an LTI system. Based on a time moments estimation procedure, a simple adaptive scheme for Single-Input Single-Output (SISO) systems with only a cascade compensator has been reported. The first chapter is essentially meant to ensure that the problem we seek to address in the field of adaptive control indeed has scope for research. Having defined Adaptive Control, we selectively scan through the literature on LTI systems, with focus on MRAC. We look out in particular for studies involving plants of which not much is known regarding their order and systems which are possibly nonminimum phase. We found no evidence to assert that the problem of adaptive control of stable LTI systems, not necessarily minimum phase and of unknown upper bound on the order, was explored enough, save two attempts involving SISO systems. Taking absence of evidence (of in-depth study) for evidence of absence, we make a case for the problem and formally state it. We preview the thesis. We set two targets before us in Chapter 2. The first is to review one of the existing procedures attacking the problem we intend to address. Since the approach is based on the notion of time moments of an LTI system, and as we are to employ Pade Approximations as a tool, we uncover these concepts to the limited extent of our requirement. The adaptive procedure, Plant Command Modifier Scheme (PCMS) [78], for SISO plants is reported in some detail. It stands supported on an algorithm specially designed to estimate the time moments of an LTI system given no more than its input and output. Model following there has been sought to be achieved by matching the first few time moments of the reference model by the corresponding ones of the overall compensated plant. The plant time moment estimates have been taken to represent the unknown plant. The second of the goals is to analyze PCMS critically so that it may serve as a forerunner to our work. We conclude the chapter after accomplishing these goals. In Chapter 3, we devise a time moment estimator for SISO systems from a perspective which is conceptually equivalent to, yet functionally different from, that appropriated in [78]. It is a recipe to obtain estimates of time moments of a system by computing time moment estimates of system input and output signals measured up to current time. Pade approximations come by handy for this purpose. The lacunae exposed by a critical examination of PCMS in Chapter 2 guide us to progressively refine the estimator. Infirmities in the control part of PCMS too have come to light on our probing into it. A few of these will be fixed by way of fabricating two exclusively cascade compensators. We encounter some more issues, traceable to the estimator, which need redressal. Instead of directly fine-tuning the estimator itself, as is the norm, we propose the idea of 'estimating' the lopsidedness of the estimator by using it on the fully known reference model. This will enable us to effect corrections and obtain admissible estimates. Next, we explore the possibility of incorporating feedback compensation in addition to the existing cascade compensation. With output error minimization in mind, we come up with three schemes in this category. In the process, we anticipate the risk of instability due to feedback and handle it by means of an instability preventer with an inbuilt instability detector. Extensive simulations with minimum and rionminimum phase unknown plants employing the various schemes proposed are presented. A systematic study of simulation results reveals a dyad of hierarchies of progressively enhanced overall performance. One is in the sequence of the proposed schemes and the other in going for matching more and more moments. Based on our experiments we pick one of the feedback schemes as the best. Chapter 4 is conceived of as a bridge between SISO and multivariable systems. A transition from SISO to Multi-Input Multi-Output (MIMO) adaptive control is not a proposition confined to the mathematics of dimension-enhancement. A descent from the MIMO to the SISO case is expected to be relatively simple, though. So to transit as smoothly and gracefully as possible, some issues have to be placed in perspective before exploring multivariable systems. We succinctly debate on the efforts in pursuit of the exact vis-a-vis the accurate, and their implications. We then set some notations and formulate certain results which serve to unify and simplify the development in the subsequent three chapters. We list a few standard results from matrix theory which are to be of frequent use in handling multivariable systems. We derive control laws for Single-Input Multi-Output (SIMO) systems in Chapter 5. Expectedly, SIMO systems display traits of observability and uncontrollability. Results of illustrative simulations are furnished. In Chapter 6, we formulate control laws for Multi-Input Single-Output (MISO) systems. Characteristics of unobservability and controllability stand out there. We present case studies. Before actually setting foot onto MIMO systems, we venture to conjecture on what to expect there. We work out all the cascade and feedback adaptive schemes for square and nonsquare MIMO systems in Chapter 7. We show that MIMO laws when projected to MISO, SIMO and SISO cases agree with the corresponding laws in the respective cases. Thus the generality of our treatment of MIMO systems over other multivariable and scalar systems is established. We report simulations of instances depicting satisfactory performance and highlight the limitations of the schemes in tackling the family of plants of unknown upper bound on the order and possibly nonminimum phase. This forms the culmination of our exercise which took off from the reported work involving SISO systems [78]. Up to the end of the 7th chapter, we are in pursuit of solutions for the problem as general as in §1.4. For SISO systems, with input restrictions, the problem has been addressed in [79]. The laws proposed there carry out adaptation only at certain discrete instants; with respect to a suitably chosen cost, the final laws are proved to be e>optimal. In Chapter 8, aided by initial suboptimal control laws, we finally devise two algorithms with continuous-time adaptation and prove their optimality. Simulations with minimum and nonminimum phase plants reveal the effectiveness of the various laws, besides throwing light on the bootstrapping and auto-rectifying features of the algorithms. In the tail-piece, we summarize the work and wind up matters reserved for later deliberation. As we critically review the present work, we decant the take-home message. A short note on applications followed by some loud thinking as a spin-off of this report will take us to finis.
28

The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems.

Ben Salem, Aymen 20 December 2013 (has links)
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.
29

The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems.

Ben Salem, Aymen January 2014 (has links)
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.

Page generated in 0.0482 seconds