• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle, calculs et applications de la visibilité en dimension $n$

Aveneau, Lilian 14 December 2013 (has links) (PDF)
Ce mémoire d'habilitation à diriger des recherches résume les différents travaux menés entre 2000 et 2013 au sein du laboratoire SIC, à l'Université de Poitiers. Le coeur de ces activités est la caractérisation, le calcul, la représentation et l'utilisation de la visibilité entre des ensembles convexes de points de l'espace géométrique en dimension $n\ge2$. Nous avons notamment utilisé l'algèbre de Grassmann pour construire un espace de droites, dans lequel le problème de la visibilité peut être discuté. Nous avons proposé deux méthodes de calculs, l'un explicite et complet, et l'autre reposant sur une évaluation paresseuse. Différentes applications en synthèse d'images reposent sur ces travaux. D'autres travaux autour de la visibilité, en synthèse d'images mais aussi dans le domaine de la propagation des ondes, sont présentés dans ce mémoire. L'ensemble a été réalisé à travers l'encadrement de 5 doctorants.
2

Propriétés optiques, mécanismes de formation et applications du silicium noir / Black Silicon optical properties, growth mechanisms andapplications

Abi Saab, David 04 March 2015 (has links)
Dans le cadre de cette thèse, nous présentons un aperçu général des surfaces du silicium micro et nano structurées, appelées silicium noir (BSi), et obtenues par la gravure ionique réactive cryogénique (cryo-DRIE). Ces surfaces auto-générées peuvent être fabriquées dans un procédé en une seule étape fournissant de grandes surfaces à faible réflectivité sur une large gamme de longueurs d'onde et d'angles d'incidence. Nous examinons plusieurs aspects des surfaces du BSi, incluant les méthodes de fabrication, les applications, les méthodes de caractérisation de sa topographie, les techniques de modélisation pour les simulations optiques, et les mécanismes de croissance. Nous développons ensuite trois principales contributions que cette thèse apporte à l'état de l'art : une meilleure compréhension de la topographie du BSi, la modélisation de son comportement optique et un aperçu de ses mécanismes de formation. Nous développons une nouvelle technique de caractérisation topographique du BSi, utilisant un faisceau ionique localisé dans le plan de l'échantillon pour réaliser une nanotomographie qui reproduit les détails de structure avec une précision inférieure au micron. Nous présentons ensuite différentes méthodes de modélisation de cellules unitaires du BSi basées soit sur la topographie de la surface réelle obtenue, ou sur des formes géométriques équivalentes qui sont statistiquement représentatives de la topographie du BSi. Nous sommes capables d'obtenir une excellente concordance entre les simulations et les données expérimentales. Nous présentons également un modèle capable de simuler toute l'évolution de la surface du BSi allant d'un substrat plat jusqu'à sa topographie entièrement développée, en concordance avec des données obtenues expérimentalement. On produit un diagramme de phase qui saisit les combinaisons de paramètres responsables de la formation du BSi. Nous sommes en mesure de reproduire dans notre modèle, un certain nombre d'effets subtils qui mènent à la densification du motif observé, responsable de la formation du BSi pendant cryo-DRIE / In this thesis, we present a general overview of silicon micro and nanostructured surfaces, known as black silicon (BSi), fabricated with cryogenic deep reactive ion etching (cryo-DRIE). These self-generated surfaces can be fabricated in a single step procedure and provide large surfaces with reduced reflectance over a broad range of wavelengths and angles of incidence. We review several aspects of BSi surfaces, such as its fabrication methods, applications, topography characterization methods, modelling techniques for optical simulations, and growth mechanisms. We then develop three main contributions that this thesis brings to the state of the art: a better understanding of BSi topography, modelling of its optical behaviour and insights into its formation mechanism. We develop a novel BSi topographical characterisation technique which is based on in-plane focused ion beam nanotomography and can reproduce sample details with submicron accuracy. We then present different methods of modelling BSi unit cells, based either on real surface topography obtained using the aforementioned technique, or on equivalent geometric shapes that are statistically representative for BSi topography. We are capable to obtain excellent matching between simulations and experimental data. Finally, we present an experimentally-backed phenomenological model that is capable of simulating the entire evolution of a surface from a planar substrate to fully developed BSi topography. We produce a phase diagram which captures the parameter combinations responsible for BSi formation. We also observe experimentally, and are able to reproduce within our model, a number of subtle effects that lead to the observed pattern densification that is responsible for BSi formation during cryo-DRIE
3

Dispositifs photoniques hybrides sur Silicium comportant des guides nano-structurés : conception, fabrication et caractérisation / Hybrid photonic devices on silicon including nanostructured waveguides : conception, fabrication and characterization

Itawi, Ahmad 01 December 2014 (has links)
Le contexte de cette thèse couvre les dispositifs photoniques hybrides III-V sur silicium. L’étude porte sur l’intégration par collage de matériau à base d'InP sur le silicium, puis la conception d’un guide optique comportant une nanostructuration qui permettra la sélection en longueur d’onde dans un laser DFB hybride. Enfin, on étudie les étapes technologiques de fabrication d’un laser hybride injecté électriquement fonctionnant dans le domaine spectral 1.55µm, et on caractérise les dispositifs. Pour associer les matériaux III-V sur Si, nous avons développé le collage sans couche intermédiaire que l’on nomme collage hétéroépitaxial ou oxide-free. Ce collage est reporté dans la littérature comme présentant une meilleure qualité électrique. Nous avons établi les conditions de préparation permettant d’obtenir des surfaces parfaitement désoxydées, et les conditions de recuit conduisant à une interface hybride sans oxyde et sans dislocation. Mais ce recuit est réalisé à température assez élevée (~450-500°C). Nous avons alors développé le collage avec une fine couche intermédiaire d’oxyde réalisé à plus faible température -300°C- qui présente l'avantage d'être compatible avec la technologie CMOS. Nous avons étudié différentes approches pour élaborer et activer une couche d’oxyde très fine (~3nm), de façon à obtenir une surface collée sans zones localement non collées. Le collage est dans les deux cas réalisé sous vide dans un équipement de type Bonder Suss SB6e. La qualité structurale de l’interface a été observée par STEM et la qualité mécanique du joint de collage a été caractérisée par indentation. Une méthode originale de mesure quantitative et locale de l’énergie du joint de collage a été développée. La qualité optique des couches collées a été étudiée par la mesure de la photoluminescence de puits quantiques placés proches du joint d’interface. En conséquence du collage sans couche intermédiaire ou avec une couche très fine, le design du mode optique est de type double-cœur, qui ne nécessite pas de taper. Le guide optique Si est de type shallow ridge, le confinement latéral étant assuré par un matériau nanostructuré à une période sub-longueur d’onde. Ce matériau fonctionne comme un matériau effectif uniaxe pour lequel on a calculé les indices optiques ordinaire et extraordinaire selon la géométrie de la nanostructuration. On peut rajouter sur cette nanostructuration une super-périodicité qui conduit à un fonctionnement sélectif en longueur d’onde. Le comportement modal du guide est simulé à l'aide du logiciel COMSOL Multiphysics, le comportement spectral est simulé par FTDT 3D. Nous avons validé la pertinence de ce design en mesurant la transmission de guides hybrides. Ce design sera inclus dans un laser et permettra d’obtenir une émission monofréquence de type DFB. Nous avons développé les étapes technologiques nécessaires à la fabrication d’un laser hybride à base d'InP sur Silicium fonctionnant en injection électrique. Nous avons mis en oeuvre de nombreuses techniques, et développé plusieurs procédés spécifiques, en particulier, des procédés de gravure sèche de type Inductive Coupled Plasma Reactive Ion Etching ICP-RIE pour la gravure de la nanostructuration dans le silicium, et pour la gravure du mésa du laser. La présence des 2 matériaux III-V et Si dans le dispositif hybride rend ces étapes complexes. Les premiers résultats peuvent être améliorés en optimisant la technologie des contacts. Un design permettant de s’affranchir de la pénalité thermique présenté par tous les dispositifs ayant les 2 contacts électriques du coté du matériau III-V a été proposé, exploitant le passage du courant à l’interface hybride III-V / Si, ce qui est possible dans le cas du collage oxide-free. Cette approche ouvre des perspectives d’intégration au-delà de la photonique. / This work contributes to the general context of III-V materials on Silicon hybrid devices for optical integrated functions, mainly emission/amplification at 1.55µm. Devices are considered for operation under electrical injection, reaching performances relevant for data transfer application. The main three contributions of this work concern: (i) bonding InP-based materials on Si, (ii) nanostructuration of the Si guiding layer for spatial and spectral control of the guided mode and (iii) technology of an hybrid electrically injected laser, with a special attention to the thermal budget. Bonding has been investigated following two approaches. The first one we call heterohepitaxial or oxide-free bonding, is performed without any intermediate layer at a temperature ~450°C. This approach has the great advantage allowing electrical transport across the interface, as reported in the literature. We have developed oxide-free surface preparation for both materials, mainly InP-based layers, and established bonding parameter processing. An in-depth STEM and RX structural characterization has demonstrated an oxide-free reconstructed interface without any dislocation except on one or two atomic layers which accommodate the large lattice mismatch (8.1%) between InP and Si. Photoluminescence of quantum wells intentionally grown close to the interface has shown no degradation. We have also developed an oxide-based bonding process operated at 300°C in order to be compatible with CMOS processing. The original ozone activation of the very thin (~5nm) oxide layer we have proposed demonstrates a bonding surface without any unbonded area due to degassing under annealing. We have developed an original method based on nanoindentation characterization in order to obtain a quantitative and local value of the surface bonding energy. Related to the absence or to the very thin intermediate layer between the two materials, our modal design is based on a double core structure, where most of the optical mode is confined in the Si guiding layer, and no taper is required. The Si waveguide on top of the SOI stack is a shallow ridge. A nanostructured material on both sides of the waveguide core ensures the lateral confinement, the nanostructuration geometry being at a sub-wavelength period in order to operate this material well below its photonic gap. It behaves as an uniaxial material with ordinary and extraordinary indices calculated according to the structuration geometry. Such a structuration allows modal and spectral control of the guided mode. 3D modal and spectral simulation have been performed. We have demonstrated, on a double-period structuration, a wavelength selective operation of hybrid optical waveguides. Such a double-period geometry could be included in a laser design for DFB operation. This nanostructuration has larger potential application such as coupled waveguides arrays or selective resonators. We have developed all the technological processing steps for an electrically injected hybrid laser fabrication. Main developments concern dry etching, performed with the Inductive Coupled Plasma Reactive Ion Etching ICP-RIE technique of both the nanostructuration of the Silicon material, and the mesa of the hybrid laser. Efficient electrical contacts fabrication is also a complex step. First lasers operating performances could be improved. We have investigated a specific design in order to overcome the thermal penalty encountered by all the hybrid devices. This penalty is due to the thick buried oxide layer of the SOI stack that prevents heating related to the current flow to be dissipated. Taking advantage of the electrical transport we have shown at the oxide-free interface, we propose a design where the n-contact is defined on the guiding Si layer, suppressing thermal heating under electrical operation. Such an approach is very promising for densely packed hybrid devices integrated with associated electronic driving elements on Si.

Page generated in 0.0855 seconds