1 |
Étude théorique et simulations de dynamique moléculaire du frottement liquide/solide dans des nanopores à base de graphite : rôle de la courbure dans le transport rapide des fluides à l'intérieur des nanotubes de carboneFalk, Kerstin 23 September 2011 (has links) (PDF)
Ce manuscrit présente une description théorique des propriétés de transport exceptionnelles des liquides dans les nanotubes de carbone (CNT). La perméabilité de ces canaux dépasse largement ce qui est prévu par les équations de l'hydrodynamique et la condition limite de non-glissement. Au cours des dernières années, plusieurs groupes ont effectué des expériences d'écoulement de liquides dans des membranes de CNT. Une perméabilité très supérieure à l'attente classique a été observée. Dans ce contexte, nous avons mené une étude exhaustive du frottement liquide/solide qui apparaît pendant l'écoulement d'un fluide dans un CNT, à l'aide de simulations de dynamique moléculaire. Le coefficient de frottement a été mesuré pour différents systèmes en utilisant plusieurs méthodes indépendantes. Les simulations ont montré que le coefficient de frottement était indépendant du confinement, mais qu'il dépendait considérablement de la courbure de la paroi. Pour l'eau dans un CNT, le coefficient de frottement diminue avec le rayon du tube. Nous avons ensuite établi une expression approchée du coefficient de frottement, qui le relie à des propriétés microscopiques de l'interface entre le liquide et la paroi. Cette expression reproduit la dépendance du coefficient de frottement avec la courbure, et permet de l'expliquer à partir des trois paramètres statiques suivants : la densité surfacique de l'eau, la rugosité de la paroi et la commensurabilité entre les structures de la paroi et de la première couche d'eau à l'interface. En résumé, notre étude a permis une compréhension détaillée du frottement de l'eau dans les CNT, qui explique l'origine de sa valeur extrêmement basse.
|
2 |
Interaction of pulsed electric fields with membrane models for controlled release of drugs / Interaction des champs électriques pulsés avec des modèles de membranes pour le relargage contrôlé de médicamentsCasciola, Maura 22 March 2016 (has links)
Électroporation (EP) est une technique utilisée pour affecter l’intégrité des membranes cellulaires de plasma et/ou organites internes, conséquence de l’application d’un champ électrique d’énergie suffisante, dépendant de son intensité et sa durée. Il a été montré in- directement par de nombreuses études expérimentales et in-silico que ce phénomène résulte de la perméabilisation de la membrane par la formation pores aqueux. L’EP permet ainsi la vectorisation de molécules normalement non perméantes. Les applications de l’EP vont de l’électrochimiothérapie, à la vaccination à ADN. Les impulsions électriques utilisées dans l’EP sont classées en deux familles: Les msPEF dont la longueur des impulsions est de l’ordre de la microseconde et l’amplitude de l’ordre de quelques kV/cm. Ils affectent principalement la membrane cellulaire plasmique. Les nsPEFs d’intensité de MV/m de durée de l’ordre de la nanoseconde, ceux eux sont capables de perméabiliser organites internes ainsi que la membrane plasmique et présentent l’avantage d’éviter les effets thermiques indésirables. Les simulations de dynamique moléculaire (DM) qui permettent la description atomique, de la structure de la membrane et de son interaction avec la solution environnante, constituent un appui précieux aux résultats expérimentaux. Plusieurs études utilisant la DM été consacrées à décrire certains des aspects de l’EP (par exemple la formation de pores, leur évolution, le rôle de l’eau et des groupes de tête lipidiques, ...) néanmoins des questions en suspens restent inexplorées : • Comment la composition de la membrane affecte le seuil d’EP ? • Quelles sont la morphologie, la taille et la conductance des pores formés ? • Quels sont le mécanisme et l’échelle de temps de translocation de petites molécules à travers ces électropores ? • Y-a-t-il une différence notoire entre les effets des msPEFs et des nsPEFs ? Dans le cadre de ce travail, en utilisant des simulations de DM nous avons abordé ces questions pertinentes. Nous avons quantifié le seuil d’EP de bicouches lipidiques contenant des concentrations croissantes de cholestérol utilisant des protocoles qui miment les deux modes types de pulses nsPEFs et msPEFs. Les résultats obtenus indiquent que dans les deux cas les modèles de membranes à concentration en cholestérol croissante, nécessitent un voltage transmembranaire plus élevé pour perméabiliser la bicouche lipidique. Nous avons développé une procédure, mimant l’effet des msPEFs en adéquation avec les expériences, qui permet de stabiliser les voltages appliqués à la membrane suffisamment longtemps pour déterminer la dimension des pores, leur conductance et sélectivité ionique. Nous avons utilisé le même protocole pour étudier le transport de petites molécules chargées, utilisés dans l’administration de médicaments, et comparé nos résultats avec des études similaires menées dans des conditions nsPEFs. Nous avons montré que le transport assisté par EP a lieu dans la même échelle de temps (ns) que sous nsPEFs. Bien que les nsPEF ont l’avantage d’affecter les membranes cellulaires et celles des organites internes, la possibilité d’exploiter de telles impulsions pour la vectorisation de médicaments est encore en cours d’étude, car la capacité à fournir de manière fiable à des échantillons «biologiques» ces impulsions intenses ultra-courtes n’est pas trivial. Une attention particulière doit être accordée à la conception de micro-chambres afin de réaliser un dispositif à large bande passante afin de transmettre sans atténuation et distorsion les pulses ns, qui sont caractérisés par une grandes composante spectrale, jusqu’à GHz. Une partie importante de cette thèse mené en cotutelle, a été consacrée à la conception théorique (utilisant la Méthode des éléments Finis) d’un dispositif d’exposition, basé sur des systèmes de propagations de micro-ondes, capable de délivrer des impulsions aussi courtes que la ns avec des temps de monté et de chute de 0,5 ns / Electroporation (EP) is a technique used to affect the integrity of plasma cell membranes and/or internal organelles, consequence of the application of an external pulsed electric field of sufficient energy content, tuned by its strength and duration. It is proven by extensive indirect experimental and in silico evidences that this phenomenon results in the permeabilization of membrane structures by aqueous pores, allowing the transport of poorly- or non-permeant molecules, e.g. salts, ions, genetic material, and any other small solutes present. Applications of the techniques range from electrochemoterapy DNA vaccination and gene regulation. The electric pulses used in EP are categorized in two main families: msPEF, the length of the pulses is in the µs- ms scale and the amplitude in the order of kV/cm, their effect takes place mainly at the plasma cell membrane of cells; nsPEFs, higher magnitude (MV/m) over ns time scale, they act are able to permeabilize internal organelles as well as the plasma cell membrane, presenting the advantage of avoiding undesired thermal effects. Molecular dynamics simulations allow the microscopic description, with atomic resolution, of the membrane structure and its interaction with the surrounding solution, providing a substantial support to experimental findings. A considerable amount of work have been devoted to describe some of the aspects of EP using MD, (e.g. the pore formation, its evolution and reseal, the role of water and of lipid headgroups, …) nevertheless outstanding questions remain unexplored: • How does the composition of the bilayer affect the EP threshold? • What are the morphology, size and conductance of pores formed? • What are the mechanisms and time scales of translocation of small molecules through the electropores? • Is there any difference when modeling nsPEFs and msPEFs? As part of the present work, using MD simulations and comparing our results to other findings from our group, we addressed some relevant questions. We quantified the EP threshold of libid bilayes for the increasing concentration of cholesterol (0, 20, 30, 50 mol %) when the two protocol to model nsPEFs and msPEFs are exploited. The results obtained applying the two approaches indicate that in both cases an increase in cholesterol concentration requires a higher transmembrane voltage to porate the membrane bilayer. We developed a procedure, mimicking msPEFs, to stabilize electropores under different transmembrane voltages in mechanical condition similar to experiments for a time long enough to determine the pore dimension, its conductance and selectivity to ion species. We employed the same method to investigate the transport of small charged molecules, used in drug delivery, comparing our findings with similar studies conducted under nsPEFs conditions with the attempt to rationalize the molecular uptake. Interestingly we found that that the dynamic of the transport process takes place in the same time scale (nanosecond) that for nsPEFs. Despite the fact that nsPEFs have the advantage to affect both cell membranes and internal organelles and to further reduce thermal effects, the possibility to exploit nsPEFs for drug delivery is an ongoing research since the ability to reliably deliver to biological loads these ultra-short intense pulses is not trivial. Particular attention must be paid in the design of microchambers to realize a broadband devices to transmit without attenuation and distortion nsPEF, which exhibit large spectral components, i.e. spanning from MHz up to GHz. An important part of the current work has been devoted to the design (with Finite Element Method) of an exposure device, based on microwave propagating systems, able to deliver pulses down to 1 ns with rise and fall time of 0.5 ns
|
3 |
Vers une meilleure compréhension du stockage de l'Hydrogène dans les clathrate hydrates : analyse de leur dynamique par simulation de dynamique moléculaire et par diffusion quasi élastique de neurtronsPefoute Takom, Eric William 20 July 2010 (has links)
La disparition attendue des combustibles fossiles dans un avenir proche est l'un des grands défis de ce siècle auquel nous devons faire face. Pour cela, il serait judicieux de transférer l’énergie primaire utilisée aujourd'hui en énergies renouvelables. Le secteur des transports est l'un des plus concernés par cette problématique. Une application dans ce secteur nécessite de nombreux travaux de recherche et c'est dans ce contexte que le stockage de l'hydrogène à l'intérieur des clathrate hydrates a été entrepris au cours de mon programme de recherche doctoral. Cette étude avait pour objectif d’étudier les interactions hôte-invité (dynamique) dans les clathrates hydrates et s’est étendue de la synthèse de clathrates hydrates jusque l’insertion de l'hydrogène en leur sein. Cette étude a été faite à la fois d’un point de vue expérimental et théorique : des simulations de Dynamique Moléculaire (MD) ont été utilisées afin de guider l’interprétation d’expériences de Diffusion incohérente Quasi Elastique des Neutrons (QENS). Dans un premier temps, nous avons développé cette approche méthodologique en étudiant la dynamique du clathrate hydrate de bromométhane, système prototype. Dans un deuxième temps, nous avons appliqué cette approche multi-technique à l'étude de clathrate hydrates impliqués dans la problématique du stockage d'hydrogène. Pour cela, nous avons étudié le clathrate hydrate de tétrahydrofurane (THF), utilisé comme sous-structure hôte au stockage d'hydrogène. Un dispositif expérimental original a été développé pour la préparation d'un hydrate clathrate binaires H2-THF. L’analyse des expériences de diffusion neutronique effectuée sur ce clathrate binaire a révélé l’existence de mouvements diffusifs localisés des molécules d’hydrogène à l’intérieur des cages. / The expected disappearance of fossil fuels in the near future is one of the major challenges of this century which we need to face up and it is necessary to anticipate it. For that, it will be convenient that we have begun the primary energy transfer used today to renewable energy. The sector of transport is one of the most concerned by these renewable energies. An application in this sector would require numerous research works and it is in this context that the hydrogen storage inside the clathrate hydrates has been undertaken during my PhD. This work aimed at investigating the host-guest interactions (dynamics) of clathrate hydrates and ranged from the synthesis of clathrate hydrates to the insertion of hydrogen within them. This study has been done both from experimental and theoretical point of view. Molecular Dynamics (MD) simulations were used to guide the interpretation of incoherent Quasi-Elastic Neutron Scattering (QENS) experiments. At first, we developed a methodology combining MD and QENS to investigate the dynamics of bromomethane clathrate hydrate, a prototypical system. Having validated the multi-technique approach, the methodology has been applied to investigate clathrate hydrates involved in the hydrogen storage problematic. In this issue, the tetrahydrofuran (THF) clathrate hydrate, used as host sub-structure for storing hydrogen, has been studied. An original experimental set-up has been developed for the preparation of a binary H2-THF clathrate hydrate. The analysis of QENS experiments performed on this binary clathrate hydrate revealed the existence of localized translational motion of hydrogen molecules within the clathrate cages.
|
4 |
Etude par modélisation de dynamique moléculaire et spectroscopie RMN des déformations induites par la coordination du cisplatine sur l'ADNTéletchéa, Stéphane 27 September 2005 (has links) (PDF)
Le cisplatine (ou cis-diammine, dichloro-platine) est l'un des composés chimiques les plus utilisés actuellement en chimiothérapie anticancéreuse. Depuis la description de ses propriétés anticancéreuses par B. Rosenberg en 1965 de nombreux travaux ont été effectués a n de décrire le mécanisme d'action lui conférant ses propriétés antitumorales. A travers une approche originale couplant modélisation et travail expérimental, les recherches réalisées durant ma thèse ont permis d'élucider le comportement dynamique d'un adduit platiné sur la séquence 5'-GCCG*G*GTCGC-3' / 5'-GCGACCCGGC-3' (G* représente une guanine platinée). Cette structure a été comparée à celle de l'adduit ADN-cisplatine déterminée précédemment au laboratoire sur la séquence G*G*A. Nous avons ainsi étudié l'influence d'une guanine adjacente en 3' au pontage GG-Pt sur la structure de l'adduit. Il s'agit de la première étude structurale sur un adduit du cisplatine avec la séquence GGG. Même si l'a nité de la séquence GGG et des sites contenant Gn (n>= 3) pour le platine (II) est connue depuis longtemps, ses adduits avec le cisplatine n'ont pas encore été étudiés par RMN à cause des problèmes posés par leur puri cation. Cette étude de l'adduit G*G*G par RMN a été confrontée à la description dynamique de cet adduit, calculée par simulation. La paramétrisation du champ de force parm 98 a été spéci quement a née pour mieux décrire l'environnement de l'atome du platine. La confrontation entre la simulation de l'adduit G*G*G-Pt et les données issues de l'étude par RMN a permis de valider notre paramétrisation. Pour déterminer les proportions précises des sous-états BI et BII de l'ADN, une méthode novatrice a été mise au point. Celle-ci est basée sur la combinaison de quatre distances inter-protons H2'(n)-H8(n), H1'(n)-H6/8(n+1), H2'(n)-H6/8(n+1) et H2''(n)-H6/8(n+1) qui permet de discriminer les deux sous-conformations. Ces améliorations du champ de force et de la méthode de détermination des sous-conformations BI/BII ont permis la description ne du comportement de l'adduit couplé à l'ADN, ce qui nous a servi pour étudier le mécanisme anti-tumoral du cisplatine. En effet la reconnaissance de l'ensemble cisplatine-ADN par une protéine (Lymhoïd Enhanced Factor I - LEF I) pourrait activer les voies métaboliques de la cellule cancéreuse conduisant vers l'apoptose ou vers la réparation de la tumeur. La simulation de l'ensemble ADN-protéine (sans cisplatine) a permis de présenter le mode de reconnaissance de la protéine sur la déformation ainsi que la mise en évidence de l'implication d'une molécule d'eau dans celui-ci. Les études sur le cisplatine fixé sur son ADN cible nous ayant apporté de nombreuses connaissances sur les déformations engendrées, nous avons validé la déformation structurale formée par un autre complexe de platine, le pyrazolato-bis-platine. Ce composé a été conçu de novo pour induire une déformation faible de son ADN cible a n de provoquer une réponse cellulaire différente de celle engendrée par le cisplatine. La simulation a indiqué que ce complexe induit une faible courbure de l'ADN et une déformation globale différente de celle du cisplatine, ce qui exclut le même mode de reconnaissance. Comme expérimentalement le complexe pyrazolato possède une activité anti-tumorale, les simulations effectuées suggèrent donc que le mode d'action au niveau cellulaire est différent du cisplatine. Les travaux réalisés lors de ma thèse ont permis d'améliorer la compréhension des déformations ADN-cisplatine, ADN-cisplatine-protéine et de perfectionner la description des composés platinés dans le champ de force parm 98 (puis parm 99) du logiciel de modélisation moléculaire AMBER.
|
5 |
Simulations de dynamique moléculaire des processus de plasma induits par l'hydrogène atomique et la croissance épitaxiale de couches minces de silicium catalysée par l'impact d'agrégatsLe, Ha-Linh Thi 29 January 2014 (has links) (PDF)
Trois processus qui ont lieu dans un réacteur à plasma ont été étudiés au moyen de simulations de dynamique moléculaire: le chauffage et la fusion des agrégats de silicium hydrogéné par des réactions avec l'hydrogène atomique, la guérison induite par l'hydrogène des surfaces de silicium auparavant endommagées par l'impact violent d'agrégats, et la croissance épitaxiale des couches minces catalysée par des agrégats de silicium hydrogéné. Deux agrégats de silicium hydrogéné qui représentent des structures amorphes et cristallines sont choisis pour être exposés à l'hydrogène atomique comme dans un réacteur à plasma réaliste. Nous avons étudié quantitativement comment les agrégats chauffent et fondent par des réactions avec des atomes d'hydrogène. Une surface de silicium qui a été partiellement endommagée par l'impact violent d'un agrégat a été traitée par des atomes d'hydrogène. Nous avons observé que la surface du silicium mal définie est réarrangée à sa structure cristalline initiale après l'exposition à l'hydrogène atomique ; à savoir, en raison de la dynamique de réaction de surface avec des atomes d'hydrogène, les atomes de silicium de l'agrégat de silicium hydrogéné sont positionnés dans une structure épitaxiale de la surface. Ensuite, nous avons effectué une étude approfondie sur la dynamique du dépôt des agrégats de silicium hydrogéné sur un substrat de silicium cristallin en contrôlant les paramètres régissant le dépôt d'agrégat sur la surface. Nous avons trouvé que la croissance épitaxiale de couches minces de silicium peut être obtenue à partir de dépôts d'agrégats si les énergies d'impact sont suffisamment élevées pour que les atomes de l'agrégat et des atomes de la surface touchant l'agrégat subissent une transition de phase à l'état liquide avant d'être recristallisés dans un ordre épitaxial. Ce processus est d'une importance cruciale pour améliorer la croissance épitaxiale à grande vitesse des couches minces de silicium à basse température en utilisant la technique PECVD (" Plasma Enhanced Chemical Vapor Deposition ") pour des applications industrielles.
|
6 |
Simulations moléculaires d'une nouvelle classe de liquides ioniques basés sur la fonction ammonium pour l'utilisation potentielle en tant qu'huiles lubrifiantes respectueuses de l'environnementFernandes Mendonça, Ana Catarina 21 February 2013 (has links) (PDF)
L'objectif de ce travail est de comprendre la structure et les interactions des liquides ioniques au contact de surfaces métalliques à l'échelle moléculaire en ayant recours aux méthodes de dynamique moléculaire. Il s'agit également d'étudier l'impact de ces caractéristiques microscopiques sur les propriétés tribologiques du système. Les liquides ioniques choisis en tant qu'huiles lubrifiantes potentielles présentent des propriétés biodégradables et des caractéristiques tribologiques appropriées. Ils reposent sur des cations alkylammonium combinés avec des anions alkylsulfonate et bistriflamide. Notre étude est structurée en quatre parties. Elle commence par l'analyse des liquides ioniques purs puis, des liquides ioniques confinés entre deux surfaces de fer à l'équilibre et sous cisaillement, et enfin, en présence d'eau. Les propriétés structurales et dynamiques des liquides ioniques sont étudiées à travers la fonction de distribution radiale et les coefficients d'auto-diffusion. L'organisation des charges ainsi que la formation de micro-domaines en solution sont étudiées conjointement au comportement diffusif des espèces ioniques. Un champ de forces atomique, basé sur des méthodes quantiques, a été développé pour modéliser les interactions entre les liquides ioniques et la surface métallique. Des calculs DFT ont été réalisés sur des fragments de liquides ioniques en interaction avec un cluster de fer en fonction de la distance et de leur orientation. Une fonction modélisant des interactions site-site a été ajustée aux valeurs d'énergies fragment-cluster calculées par DFT afin d'obtenir les paramètres du champ de forces. Finalement, la polarisation du métal par les ions a été prise en compte en utilisant un modèle de dipôles induits afin de reproduire l'énergie d'interaction entre les charges et la surface conductrice. Avec ce modèle d'interaction, les simulations de dynamique moléculaire ont permis d'étudier la structure de l'interface entre une surface de fer plane et différents liquides ioniques. Cette analyse s'est concentrée sur l'étude du positionnement des différentes espèces au niveau de la surface, sur l'orientation des chaines alkyles et sur les profils de densité de charge. Des simulations de dynamique moléculaire hors-équilibre de liquides ioniques en interaction avec des surfaces de fer ont été réalisées en utilisant le champ de forces développé précédemment. Un protocole de simulation, basé sur une définition locale de la pression, a été développé pour prédire de manière quantitative le coefficient de friction en fonction de la valeur de la charge et du taux de cisaillement. La dépendance de la friction avec la charge, la vitesse de cisaillement, la topologie de la surface et la taille de la chaine alkyle du liquide ionique a été étudiée. La variation des forces de friction s'explique par l'arrangement spécifique des ions et l'orientation des groupements du liquide ionique à proximité de la surface. Finalement, l'effet de la présence d'eau en petite quantité dans une solution de liquide ionique a aussi été étudié à l'équilibre et hors-équilibre. Un potentiel a été construit pour décrire les interactions entre l'eau et une surface de fer en utilisant la même approche que celle décrite précédemment. Des résultats préliminaires concernant la structure de l'interface liquide-métal et la valeur du coefficient de friction ont été présentés et comparés avec ceux obtenus pour les liquides ioniques purs.
|
7 |
Dynamique de l'eau d'hydratation de la protéine tau dans des formes native et amyloïde / Hydration water dynamics of the tau protein in its native and amyloid statesFichou, Yann 11 March 2015 (has links)
Les protéines qui ne possèdent pas de structure unique dans leur forme fonctionnelle constituent la classe des protéines intrinsèquement dépliées (IDPs). Ces dernières sont ubiquitaires dans une cellule et sont connues pour former des agrégats impliqués dans une large variété de maladies. Malgré leurs conformations étendues qui résultent en une large interface avec l'eau environnante, très peu d'informations sont connues sur l'interaction des IDPs avec l'eau. L'eau est parfois appelée la matrice de la vie car elle est indispensable à la plupart des processus biologiques, tels que le repliement, la stabilité ou l'activité des protéines. La protéine tau est une IDP qui régule la dynamique de croissance des microtubules dans les neurones, et dont la fibrillation en fibres de type amyloïde est l'une des marques caractéristiques de la maladie d'Alzheimer. Ce projet de thèse se propose d'explorer l'importance biologique de la dynamique de l'eau autour des IDPs. Nous combinons des méthodes expérimentales et computationnelles, incluant la diffusion incohérente de neutrons, la spectroscopie terahertz, la diffusion de rayons X aux petits angles, et les simulations de dynamique moléculaire, dans le but d'étudier la dynamique de l'eau d'hydratation de la protéine tau, dans ses formes native et fibrillaire. Pour les IDPs comme pour les protéines globulaires, il est montré que la diffusion translationnelle de l'eau d'hydratation permet l'existence des mouvements de larges amplitudes de la protéine, indispensables à la fonction biologique de cette dernière. En comparant avec la forme native, nous mettons aussi en évidence une augmentation de la mobilité de l'eau d'hydratation de la forme fibrillaire de tau. Nous proposons que cette augmentation joue un rôle dans la formation des fibres. De plus, l'étude de la dynamique collective de l'eau d'hydratation montre que la protéine tau influence un volume d'eau deux fois moindre qu'une protéine globulaire équivalente, ce qui pourrait être impliqué dans son mécanisme de liaison avec un partenaire. En conclusion, en étudiant les propriétés dynamiques de l'eau autour des IDPs, ces travaux de thèse suggèrent que la dynamique de l'eau d'hydratation pourrait jouer un rôle fondamental dans les mécanismes de liaison et de fibrillation des IDPs. / Proteins that do not have a well-defined structure in their functional state are referred to as intrinsically disordered proteins (IDPs). IDPs are ubiquitous in biological cells and their aggregation is involved in many diseases. The extended conformations of IDPs result in a large water interface, yet, interactions between IDPs and water are only scarcely documented. Water has been termed the matrix of life because it is essential for a variety of molecular processes, including protein folding, stability, and activity. The IDP tau regulates microtubule activity in neurons and is known to form amyloid fibers that are one of the hallmarks of Alzheimer disease. In this PhD thesis, the biological relevance of water dynamics around IDPs is addressed. We combine computational and experimental approaches, including all-atom MD simulations, incoherent neutron scattering, terahertz spectroscopy and small angle X-ray scattering, to study the hydration water dynamics of the tau protein in its native and fibrillated states. Firstly, a translational diffusion of hydration water molecules is found to be essential for biologically relevant dynamics of both IDPs and globular proteins. Secondly, compared to monomers, we find an enhancement of hydration water mobility around tau amyloid fibers that is suggested to play a role in fiber formation. Finally, the investigation of collective water dynamics reveals that the tau protein influences about two times less water molecules than a globular protein, which might be involved in tau's binding mechanisms. In conclusion, this piece of work investigated the dynamical properties of water around IDPs and suggests that the hydration water dynamics might play fundamental roles in binding and aggregation of IDPs.
|
8 |
Recherche d'inhibiteurs de l'interaction Lutheran-Laminine par des techniques de modélisation et de simulation moléculaires / Investigation of Lutheran-Laminin Interaction Inhibitors Using Molecular Modeling and Simulation TechniquesMadeleine, Noelly 28 September 2017 (has links)
La drépanocytose est une maladie génétique qui se caractérise par des globules rouges en forme de faucille. Chez les personnes atteintes de drépanocytose, ces globules rouges (GR) adhèrent à l’endothélium vasculaire et provoquent ainsi une vaso-occlusion. Ce phénomène s’explique par la surexpression de la protéine Lutheran (Lu) à la surface des globules rouges falciformes qui se lie fortement à la Laminine (Ln) 511/521 exprimée par l’endothélium vasculaire enflammé. Le but de cette étude est d’identifier un inhibiteur d’interaction protéine-protéine (PPI) qui possède une forte probabilité de liaison à Lu afin d’inhiber l’interaction Lu-Ln 511/521. Un criblage virtuel de 1 295 678 composés ciblant la protéine Lu a été réalisé. La validation préalable d’un protocole de scoring a été envisagée sur la protéine CD80 qui présente un site de liaison avec des caractéristiquestopologiques et physico-chimiques similaires au site de liaison prédit sur Lu ainsi que plusieurs ligands avec des constantes d’affinité connues. Ce protocole contient différentes étapes de sélection basées sur les affinités calculées (scores), des simulations de dynamique moléculaire et les propriétés moléculaires. Un protocole de scoring fiable a été validé sur CD80 avec le programme de docking DOCK6 et les fonctions de scoring XSCORE et MM-PBSA ainsi qu’avec la méthode decalcul FMO. L’application de ce protocole sur Lu a permis d’obtenir deux ligands validés par des tests in vitro qui font l’objet d’un dépôt de brevet. La fonction de scoring XSCORE a permis d’identifier neuf autres ligands qui semblent aussi être des candidats prometteurs pour inhiber l’interaction Lu-Ln 511/521. / Drepanocytosis is a genetic blood disorder characterized by red blood cells that assume an abnormal sickle shape. In the pathogenesis of vaso-occlusive crises of sickle cell disease, red blood cells bind to the vascular endothelium and promote vaso-occlusion. At the surface of these sickle red blood cells, the overexpressed protein Lutheran (Lu) strongly interacts with the Laminin (Ln) 511/521.The aim of this study was to identify a protein-protein interaction (PPI) inhibitor with a highprobability of binding to Lu for the inhibition of the Lu-Ln 511/521 interaction. A virtual screening was performed with 1 295 678 compounds that target Lu. Prior validation of a robust scoring protocol was considered on the protein CD80 because this protein has a binding site with similar topological and physico-chemical characteristics and it also has a series of ligands with known affinity constants. This protocol consisted of multiple filtering steps based on calculated affinities (scores), molecular dynamics simulations and molecular properties. A robust scoring protocol was validated on the protein CD80 with the docking program DOCK6 and the scoring functions XSCORE and MM-PBSA and also with the FMO method. This protocol was applied to the protein Lu and we found two compounds that were validated by in vitro studies. The protection of these ligands by a patent is under process. Nine other compounds were identified by the scoring functionXSCORE and seem to be promising candidates for inhibiting the Lu-Ln 511/521 interaction.
|
9 |
Direct molecular dynamics simulation of piezoelectric and piezothermal couplings in crystals / Simulation directe par dynamique moléculaire des couplages piézoélectrique et piézothermique dans les cristauxKassem, Wassim 14 September 2015 (has links)
La thèse est axée sur l'examen de l'effet de la contrainte sur la conductivité thermique des matériaux piézoélectriques. Les matériaux piézoélectriques sont des cristaux qui présentent une déformation mécanique lors de l'application d'un champ électrique. Des exemples de tels systèmes sont ZnO, AlN, et SiO2. En utilisant des simulations de dynamique moléculaire, nous avons calculé la conductivité thermique de cristaux de ZnO et AlN sous contrainte. Nous avons aussi calculé la résistance thermique des interfaces SiO/C et ZnO/C soumis à un champ électrique.Nous commençons par le calcul des propriétés piézoélectriques et élastiques de ZnO. Celles-ci serviront à valider les potentiels interatomiques utilisés, et à montrer l'ampleur de la contrainte qu’il est possible d'appliquer. En utilisant la dynamique moléculaire d'équilibre, nous avons estimé le coefficient élastique c33 de ZnO, qui se trouve être en accord avec les valeurs expérimentales. Il a aussi été déterminé que la limite élastique d'un cristal de ZnO est de 6 GPa, ce qui correspond à une déformation de 6%. Nous avons ensuite établi les coefficients piézoélectriques de ZnO en utilisant la dynamique moléculaire de non-équilibre, et il a été constaté que les coefficients piézoélectriques dij sont en accord avec les valeurs de la littérature.Deuxièmement, nous avons examiné l'effet de la pression sur la conductivité thermique intrinsèque de ZnO et d’AlN. La dynamique moléculaire de non-équilibre inverse a été mise en œuvre pour calculer la conductivité parce que les coûts de calcul sont nettement inférieurs à ceux de la méthode d'équilibre, d’autant plus pour ZnO dont le potentiel inter-atomique contient les interactions Coulombiennes. L'effet de taille sur la conductivité thermique de ZnO et AlN a ensuite été étudié. Nous avons montré que la formule de Schelling peut en effet être mise en œuvre pour les deux cristaux pour différentes valeurs de la contrainte. La conductivité thermique pour un cristal de ZnO de taille infinie est extraite de la formule de Schelling, et elle se révèle être de 410 W/mK. La conductivité thermique de cristaux de ZnO sous contrainte a ensuite été analysée. Nous avons montré que, après correction de l'effet de taille, la conductivité thermique suit une dépendance en loi de puissance à la contrainte uniaxiale. De plus, la conductivité thermique de ZnO est affectée par un champ statique externe en raison de la contrainte induite. La conductivité thermique d'AlN est estimée à 3000 W/mK, l'effet de la contrainte ne modifie pas cette valeur du fait du potentiel inter-atomique utlisé. Par conséquent, AlN n’est pas un matériau pertinent pour faire office de switch thermique.Troisièmement, nous avons exploré l'effet d’un déplacement piézoélectrique sur la conductance thermique d’interface de Si2O/graphène et ZnO/graphène. Utilisant la dynamique moléculaire d’équilibre, la conductivité thermique d'un super-réseau dont la période est composée de silice et de graphène polyfeuillet. Le super-réseau a été évalué pour différentes valeurs du champ électrique externe. Nous avons constaté que l'application d'un champ électrique de 20 MV/m positif parallèle à la direction hors-plan du super-réseau conduit à la réduction de la conductivité thermique d'un facteur deux. D'autre part, aucun changement dans la conductance thermique n’est noté pour le super-réseau ZnO/graphène. Cette différence est due aux différences de déformations induites au niveau des interfaces dans le super-réseau. L'effet est recréé dans un super-réseau Si/Ge en appliquant une déformation pour former les interfaces. Cette approche crée une déformation non uniforme qui est susceptible de diffuser les phonons. / The thesis is focused on investigating the effect of strain on the thermal conductivity of piezoelectric materials. Piezoelectric materials are crystals which display a mechanical deformation upon application of an electric field. Examples of such material are ZnO, AlN, and SiO2. Using Molecular Dynamics simulations, we calculate the thermal conductivity of unstrained and strained ZnO and AlN crystals. We also calculate the thermal resistance of SiO/graphene interfaces under strain.We calculate the piezoelectric and elastic properties of ZnO. These will serve as confirmation of the correctness of the inter-atomic potential used, and will serve to show the magnitude of strain that is possible to apply. Using non-equilibrium molecular dynamics, we determine the elastic coefficient of ZnO c33, and we see that it agrees with experimental values. We also determine that the elastic limit of a perfect ZnO crystal is 6 GPa which corresponds to a 6% strain. We also determine the piezoelectric coefficient of ZnO using NEMD, and we find that the piezoelectric coefficient d33 also agrees with literature values.Second, we look at the effect of strain on the intrinsic thermal conductivity of ZnO and AlN. We use reverse non-equilibrium molecular dynamics to calculate the conductivity because the computational costs are significantly lower than those for the equilibrium method; especially for ZnO whose inter-atomic potential contains Coulomb interaction. We also study the size-effect on the thermal conductivity of ZnO and AlN. We show that the Schelling formula can indeed be implemented to both crystals for different values of strain. The infinite length thermal conductivity for ZnO is extracted from the formula, and it is found to be 410 W/mK. We then calculate the thermal conductivity of strained ZnO crystals. We show that after correcting for the size effect the thermal conductivity follows power-law dependence to uniaxial strain. Also, we demonstrate that the thermal conductivity of ZnO can be affected by a static external field due to the induced strain. The infinite length thermal conductivity of AlN is found to be 3000 W/mK. We show that for the case of AlN the effect of strain does not affect the thermal conductivity due to the different inter-atomic bonding. Hence, AlN might not be a useful material for piezothermal application.Third, we explore the effect of piezoelectric strain on the thermal conductance of SiO2/graphene and ZnO/graphene superlattices. Using EMD we calculate the thermal conductivity of a superlattice composed of silica and graphene monolayers. The thermal conductance of the superlattice was evaluated under different values of external electric field. We find that applying a positive electric field parallel to the Z-direction leads to reduction of the thermal conductance by a factor of 2 for an electric field of 20 MV/m. On the other hand, no change in the thermal conductance is noted for ZnO/graphene superlattice. The effect is due to the non-uniform strain induced at the superlattice junctions. The effect is recreated in Si/Ge superlattice by mechanically applying a non-uniform strain at the interface. This approach might be responsible for the scattering of phonons.
|
10 |
The molecular origin of fast fluid transport in carbon nanotubes : theoretical and molecular dynamics study of liquid/solid friction in graphitic nanopores / Étude théorique et simulations de dynamique moléculaire du frottement liquide/solide dans des nanopores à base de graphite : rôle de la courbure dans le transport rapide des fluides à l'intérieur des nanotubes de carboneFalk, Kerstin 23 September 2011 (has links)
Ce manuscrit présente une description théorique des propriétés de transport exceptionnelles des liquides dans les nanotubes de carbone (CNT). La perméabilité de ces canaux dépasse largement ce qui est prévu par les équations de l'hydrodynamique et la condition limite de non-glissement. Au cours des dernières années, plusieurs groupes ont effectué des expériences d'écoulement de liquides dans des membranes de CNT. Une perméabilité très supérieure à l'attente classique a été observée. Dans ce contexte, nous avons mené une étude exhaustive du frottement liquide/solide qui apparaît pendant l'écoulement d'un fluide dans un CNT, à l'aide de simulations de dynamique moléculaire. Le coefficient de frottement a été mesuré pour différents systèmes en utilisant plusieurs méthodes indépendantes. Les simulations ont montré que le coefficient de frottement était indépendant du confinement, mais qu'il dépendait considérablement de la courbure de la paroi. Pour l'eau dans un CNT, le coefficient de frottement diminue avec le rayon du tube. Nous avons ensuite établi une expression approchée du coefficient de frottement, qui le relie à des propriétés microscopiques de l'interface entre le liquide et la paroi. Cette expression reproduit la dépendance du coefficient de frottement avec la courbure, et permet de l'expliquer à partir des trois paramètres statiques suivants : la densité surfacique de l'eau, la rugosité de la paroi et la commensurabilité entre les structures de la paroi et de la première couche d'eau à l'interface. En résumé, notre étude a permis une compréhension détaillée du frottement de l'eau dans les CNT, qui explique l'origine de sa valeur extrêmement basse. / Within the scope of this thesis, a theoretical study of liquid flow in graphitic nanopores was performed. More precisely, a combination of numerical simulations and analytic approach was used to establish the special properties of carbon nanotubes for fluid transport: Molecular dynamics flow simulations of different liquids in carbon nanotubes exhibited flow velocities that are 1-3 orders of magnitude higher than predicted from the continuum hydrodynamics framework and the no-slip boundary condition. These results support previous experiments performed by several groups reporting exceptionally high flow rates for water in carbon nanotube membranes. The reason for this important flow enhancement with respect to the expectation was so far unclear. In this work, a careful investigation of the water/graphite friction coefficient which we identified as the crucial parameter for fast liquid transport in the considered systems was carried out. In simulations, the friction coefficient was found to be very sensitive to wall curvature: friction is independent of confinement for water between at graphene walls with zero curvature, while it increases with increasing negative curvature (water at the outside of the tube), and it decreases with increasing positive curvature (water inside the tube), eventually leading to quasi frictionless flow for water in a single file configuration in the smallest tubes. A similar behaviour was moreover found with several other liquids, such as alcohol, alcane and OMCTS. urthermore, a theoretical approximate expression for the friction coefficient is presented which predicts qualitatively and semi-quantitatively its curvature dependent behavior. Moreover, a deeper analysis of the simulations according to the proposed theoretical description shed light on the physical mechanisms at the origin of the ultra low liquid/solid friction in carbon nanotubes. In fine, it is due to their perfectly ordered molecular structure and their atomically smooth surface that carbon nanotubes are quasi-perfect liquid conductors compared to other membrane pores like, for example, nanochannels in amorphous silica. The newly gained understanding constitutes an important validation that carbon nanotubes operate as fast transporters of various liquids which makes them a promising option for different applications like energy conversion or filtration on the molecular level.
|
Page generated in 0.019 seconds