• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development Of An Efficient Molecular Single-electron Transport Spectroscopy

Garrigues, Alvar 01 January 2013 (has links)
In this thesis I present a complete and detailed guide for the development process and fabrication of efficient single-electron transistors (SETs) and a better single-molecule magnets (SMMs) deposition yield. Starting from a commercial Si/SiO2 wafer I show the steps for the deposition of different layers to fabricate a SET as well as the improvements achieved in those for a completely functional SET device. The development process is based on a combination of optical lithography and e-beam lithography with metal deposition in ultra-high vacuum. The improvements involve a better conductance in the Al gate component, with a controlled formation of the superficial oxide layer and a faster feedback electromigration-induced breaking of Au nanowires for the creation of nanogaps at room temperature. The gate component is improved by increasing its thickness and exposing it to plasma oxidation for the complete oxidation of its surface. The nanowire breaking is realized at room temperature to make use of the surface tension of Au, which, after a previous feedback procedure, eventually opens the final gap in the nanowire. Finally, I demonstrate a new technique that allows increasing the yield of having a SMM connected in the nanowire gap. This new technique is based on monitoring the resistance of the broken nanowires during the SMM deposition from a controlled liquid solution at room temperature. When the resistance ( > GΩ for open gaps) drops to values below Mega-ohms (characteristic resistance of a molecule bridging the gap) for a number of nanowires in the chip, the device is then ready for low temperature measurements.
2

Kondo temperature of a quantum dot

Nah, Seungjoo 16 June 2011 (has links)
The low-energy properties of quantum dot systems are dominated by the Kondo effect. We study the dependence of the characteristic energy scale of the effect, the Kondo temperature, on the gate voltage, which controls the number of electrons in the strongly blockaded dot. We show that in order to obtain the correct Kondo temperature as a function of the gate voltage, it is crucial to take into account the presence of many energy levels in the dot. The dependence turns out to be very different from that in the conventional single-level Anderson impurity model. Unlike in the latter, the Kondo temperature cannot be characterized by a single parameter, such as the ratio of the tunneling-induced width of the energy levels in the dot and the charging energy.
3

Ingénierie de jonctions tunnel pour améliorer les performances du transistor mono-électronique métallique / Tunnel junction engineering to improve metallic single electron transistor performances

El Hajjam, Khalil January 2016 (has links)
Résumé: Aujourd’hui plusieurs obstacles technologiques et limitations physiques s’opposent à la poursuite de la miniaturisation de la technologie CMOS : courants de fuite, effet de canal court, effet de porteurs chauds et fiabilité des oxydes de grille. Le transistor à un électron (SET) fait partie des composants émergents candidats pour remplacer les transistors CMOS ou pour constituer une technologie complémentaire à celle-ci. Ce travail de thèse traite de l’amélioration des caractéristiques électriques du transistor à un électron en optimisant ses jonctions tunnel. Cette optimisation commence tout d’abord par une étude des modes de conduction à travers la jonction tunnel. Elle se conclut par le développement d’une jonction tunnel optimisée basée sur un empilement de matériaux diélectriques (principalement Al[indice inférieur 2]O[indice inférieur 3], H[florin]O[indice inférieur 2] et TiO[indice inférieur 2]) ayant des propriétés différentes en termes de hauteurs de barrières et de permittivités relatives. Ce manuscrit présente, la formulation des besoins du SET et de ses jonctions tunnel, le développement d’outils de simulation appropriés - basés sur les Matrices de transmission - pour la simulation du courant des jonctions tunnel du SET, l’identification des stratégies d’optimisation de ces dernières, grâce aux simulations et finalement l’étude expérimentale et l’intégration technologique des jonctions tunnel optimisées dans le procédé de fabrication de SET métallique en utilisant la technique de dépôt par couches atomiques (ALD). Ces travaux nous ont permis de prouver l’intérêt majeur de l’ingénierie des jonctions tunnel du SET pour accroitre son courant à l’état passant, réduire son courant de fuite et étendre son fonctionnement à des températures plus élevées. / Abstract: Today, several technological barriers and physical limitations arise against the miniaturization of the CMOS: leakage current, short channel effects, hot carrier effect and the reliability of the gate oxide. The single electron transistor (SET) is one of the emerging components most capable of replacing CMOS technology or provide it with complementary technology. The work of this thesis deals with the improvement of the electrical characteristics of the single electron transistor by optimizing its tunnel junctions. This optimization initially starts with a study of conduction modes through the tunnel junction. It concludes with the development of an optimized tunnel junction based on a stack of dielectric materials (mainly Al[subscript 2]O[subscript 3], H[florin]O[subscript 2] and TiO[subscript 2]), having different properties in terms of barrier heights and relative permittivities. This document, therefore, presents the theoretical formulation of the SET’s requirements and of its tunnel junctions, the development of appropriate simulation tools - based on the transmission matrix model- for the simulation of the SET tunnel junctions current, the identification of tunnel junctions optimization strategies from the simulations results and finally the experimental study and technological integration of the optimized tunnel junctions into the metallic SET fabrication process using the atomic layer deposition (ALD) technique. This work allowed to démonstrate the significance of SET tunnel junctions engineering in order to increase its operating current while reducing leakage and improving its operation at higher temperatures.
4

Ingénierie de jonctions tunnel pour améliorer les performances du transistor mono-électronique métallique / Tunnel barrier engineering to enhance the performances of the metallic single electron transistor

Hajjam, Khalil El 03 December 2015 (has links)
Aujourd’hui plusieurs obstacles technologiques et limitations physiques s’opposent à la poursuite de la miniaturisation de la technologie CMOS : courants de fuite, effet de canal court, effet de porteurs chauds et fiabilité des oxydes de grille. Le transistor à un électron (SET) fait partie des composants émergents candidats pour remplacer les transistors CMOS ou pour constituer une technologie complémentaire à celle-ci. Ce travail de thèse traite de l’amélioration des caractéristiques électriques du transistor à un électron en optimisant ses jonctions tunnel. Cette optimisation commence tout d’abord par une étude des modes de conduction à travers la jonction tunnel. Elle se conclut par le développement d’une jonction tunnel optimisée basée sur un empilement de matériaux diélectriques (principalement Al2O3, HfO2 et TiO2) ayant des propriétés différentes en termes de hauteurs de barrières et de permittivités relatives. Ce manuscrit présente, la formulation des besoins du SET et de ses jonctions tunnel, le développement d’outils de simulation appropriés - basés sur les matrices de transmission - pour la simulation du courant des jonctions tunnel du SET, l’identification des stratégies d’optimisation de ces dernières, grâce aux simulations et finalement l’étude expérimentale et l’intégration technologique des jonctions tunnel optimisées dans le procédé de fabrication de SET métallique en utilisant la technique de dépôt par couches atomiques (ALD). Ces travaux nous ont permis de prouver l’intérêt majeur de l’ingénierie des jonctions tunnel du SET pour accroitre son courant à l’état passant, réduire son courant de fuite et étendre son fonctionnement à des températures plus élevées. / Today, several technological barriers and physical limitations arise against the miniaturization of the CMOS: leakage current, short channel effects, hot carrier effect and the reliability of the gate oxide. The single electron transistor (SET) is one of the emerging components most capable of replacing CMOS technology or provide it with complementary technology. The work of this thesis deals with the improvement of the electrical characteristics of the single electron transistor by optimizing its tunnel junctions. This optimization initially starts with a study of conduction modes through the tunnel junction. It concludes with the development of an optimized tunnel junction based on a stack of dielectric materials (mainly Al2O3, HfO2 and TiO2), having different properties in terms of barrier heights and relative permittivities. This document, therefore, presents the theoretical formulation of the SET’s requirements and of its tunnel junctions, the development of appropriate simulation tools - based on the transmission matrix model- for the simulation of the SET tunnel junctions current, the identification of tunnel junctions optimization strategies from the simulations results and finally the experimental study and technological integration of the optimized tunnel junctions into the metallic SET fabrication process using the atomic layer deposition (ALD) technique. This work allowed to demonstrate the significance of SET tunnel junctions engineering in order to increase its operating current while reducing leakage and improving its operation at higher temperatures.
5

Charge dynamics in superconducting double dots

Esmail, Adam Ashiq January 2017 (has links)
The work presented in this thesis investigates transitions between quantum states in superconducting double dots (SDDs), a nanoscale device consisting of two aluminium superconducting islands coupled together by a Josephson junction, with each dot connected to a normal state lead. The energy landscape consists of a two level manifold of even charge parity Cooper pair states, and continuous bands corresponding to charge states with single quasiparticles in one or both islands. These devices are fabricated using shadow mask evaporation, and are measured at sub Kelvin temperatures using a dilution refrigerator. We use radio frequency reflectometry to measure quantum capacitance, which is dependent on the quantum state of the device. We measure the quantum capacitance as a function of gate voltage, and observe capacitance maxima corresponding to the Josephson coupling between even parity states. We also perform charge sensing and detect odd parity states. These measurements support the theoretical model of the energy landscape of the SDD. By measuring the quantum capacitance in the time domain, we observe random switching of capacitance between two levels. We determine this to be the stochastic breaking and recombination of single Cooper pairs. By carrying out spectroscopy of the bath responsible for the pair breaking we attribute it to black-body radiation in the cryogenic environment. We also drive the breaking process with a continuous microwave signal, and find that the rate is linearly proportional to incident power. This suggests that a single photon process is responsible, and demonstrates the potential of the SDD as a single photon microwave detector. We investigate this mechanism further, and design an experiment in which the breaking rate is enhanced when the SDD is in the antisymmetric state rather than the symmetric state. We also measure the quantum capacitance of a charge isolated double dot. We observe 2e periodicity, indicating the tunnelling of Cooper pairs and the lack of occupation of quasiparticle states. This work is relevant to the range of experiments investigating the effect of non-equilibrium quasiparticles on the operation of superconducting qubits and other superconducting devices.
6

3D integration of single electron transistors in the Back-End-Of-Line of 28 nm CMOS technology for the development of ultra-low power sensors / Intégration 3D de dispositifs SET dans le Back-End-Of-Line en technologies CMOS 28 nm pour le développement de capteurs ultra basse consommation

Ayadi, Yosri January 2016 (has links)
La forte demande et le besoin d’intégration hétérogène de nouvelles fonctionnalités dans les systèmes mobiles et autonomes, tels que les mémoires, capteurs, et interfaces de communication doit prendre en compte les problématiques d’hétérogénéité, de consommation d’énergie et de dissipation de chaleur. Les systèmes mobiles intelligents sont déjà dotés de plusieurs composants de type capteur comme les accéléromètres, les thermomètres et les détecteurs infrarouge. Cependant, jusqu’à aujourd’hui l’intégration de capteurs chimiques dans des systèmes compacts sur puce reste limitée pour des raisons de consommation d’énergie et dissipation de chaleur principalement. La technologie actuelle et fiable des capteurs de gaz, les résistors à base d’oxyde métallique et les MOSFETs (Metal Oxide Semiconductor- Field Effect Transistors) catalytiques sont opérés à de hautes températures de 200–500 °C et 140–200 °C, respectivement. Les transistors à effet de champ à grille suspendu (SG-FETs pour Suspended Gate-Field Effect Transistors) offrent l’avantage d’être sensibles aux molécules gazeuses adsorbées aussi bien par chemisorption que par physisorption, et sont opérés à température ambiante ou légèrement au-dessus. Cependant l’intégration de ce type de composant est problématique due au besoin d’implémenter une grille suspendue et l’élargissement de la largeur du canal pour compenser la détérioration de la transconductance due à la faible capacité à travers le gap d’air. Les transistors à double grilles sont d’un grand intérêt pour les applications de détection de gaz, car une des deux grilles est fonctionnalisée et permet de coupler capacitivement au canal les charges induites par l’adsorption des molécules gazeuses cibles, et l’autre grille est utilisée pour le contrôle du point d’opération du transistor sans avoir besoin d’une structure suspendue. Les transistors monoélectroniques (les SETs pour Single Electron Transistors) présentent une solution très prometteuse grâce à leur faible puissance liée à leur principe de fonctionnement basé sur le transport d’un nombre réduit d’électrons et leur faible niveau de courant. Le travail présenté dans cette thèse fut donc concentré sur la démonstration de l’intégration 3D monolithique de SETs sur un substrat de technologie CMOS (Complementary Metal Oxide Semiconductor) pour la réalisation de la fonction capteurs de gaz très sensible et ultra basse consommation d’énergie. L’approche proposée consiste à l’intégration de SETs métalliques à double grilles dans l’unité de fabrication finale BEOL (Back-End-Of-Line) d’une technologie CMOS à l’aide du procédé nanodamascene. Le système sur puce profitera de la très élevée sensibilité à la charge électrique du transistor monoélectronique, ainsi que le traitement de signal et des données à haute vitesse en utilisant une technologie de pointe CMOS disponible. Les MOSFETs issus de la technologie FD-SOI (Fully Depleted-Silicon On Insulator) sont une solution très attractive à cause de leur pouvoir d’amplification du signal quand ils sont opérés dans le régime sous-le-seuil. Ces dispositifs permettent une très haute densité d’intégration due à leurs dimensions nanométriques et sont une technologie bien mature et modélisée. Ce travail se concentre sur le développement d’un procédé de fonctionnalisation d’un MOSFET FD-SOI comme démonstration du concept du capteur de gaz à base de transistor à double grilles. La sonde Kelvin a été la technique privilégiée pour la caractérisation des matériaux sensibles par le biais de mesure de la variation du travail de sortie induite par l’adsorption de molécules de gaz. Dans ce travail, une technique de caractérisation des matériaux sensibles alternative basée sur la mesure de la charge de surface est discutée. Pour augmenter la surface spécifique de l’électrode sensible, un nouveau concept de texturation de surface est présenté. Le procédé est basé sur le dépôt de réseaux de nanotubes de carbone multi-parois par pulvérisation d’une suspension de ces nanotubes. Les réseaux déposés servent de «squelettes» pour le matériau sensible. L’objectif principal de cette thèse de doctorat peut être divisé en 4 parties : (1) la modélisation et simulation de la réponse d’un capteur de gaz à base de SET à double grilles ou d’un MOSFET FD-SOI, et l’estimation de la sensibilité ainsi que la puissance consommée; (2) la caractérisation de la sensibilité du Pt comme couche sensible pour la détection du H[indice inférieur 2] par la technique de mesure de charge de surface, et le développement du procédé de texturation de surface de la grille fonctionnalisée avec les réseaux de nanotubes de carbone; (3) le développement et l’optimisation du procédé de fabrication des SETs à double grilles dans l’entité BEOL d’un substrat CMOS; et (4) la fonctionnalisation d’un MOSFET FD-SOI avec du Pt pour réaliser la fonction de capteur de H[indice inférieur 2]. / Abstract : The need of integration of new functionalities on mobile and autonomous electronic systems has to take into account all the problematic of heterogeneity together with energy consumption and thermal dissipation. In this context, all the sensing or memory components added to the CMOS (Complementary Metal Oxide Semiconductor) processing units have to respect drastic supply energy requirements. Smart mobile systems already incorporate a large number of embedded sensing components such as accelerometers, temperature sensors and infrared detectors. However, up to now, chemical sensors have not been fully integrated in compact systems on chips. Integration of gas sensors is limited since most used and reliable gas sensors, semiconducting metal oxide resistors and catalytic metal oxide semiconductor- field effect transistors (MOSFETs), are generally operated at high temperatures, 200–500 °C and 140–200° C, respectively. The suspended gate-field effect transistor (SG-FET)-based gas sensors offer advantages of detecting chemisorbed, as well as physisorbed gas molecules and to operate at room temperature or slightly above it. However they present integration limitations due to the implementation of a suspended gate electrode and augmented channel width in order to overcome poor transconductance due to the very low capacitance across the airgap. Double gate-transistors are of great interest for FET-based gas sensing since one functionalized gate would be dedicated for capacitively coupling of gas induced charges and the other one is used to bias the transistor, without need of airgap structure. This work discusses the integration of double gate-transistors with CMOS devices for highly sensitive and ultra-low power gas sensing applications. The use of single electron transistors (SETs) is of great interest for gas sensing applications because of their key properties, which are its ultra-high charge sensitivity and the ultra-low power consumption and dissipation, inherent to the fundamental of their operation based on the transport of a reduced number of charges. Therefore, the work presented in this thesis is focused on the proof of concept of 3D monolithic integration of SETs on CMOS technology for high sensitivity and ultra-low power gas sensing functionality. The proposed approach is to integrate metallic double gate-single electron transistors (DG-SETs) in the Back-End-Of-Line (BEOL) of CMOS circuits (within the CMOS interconnect layers) using the nanodamascene process. We take advantage of the hyper sensitivity of the SET to electric charges as well from CMOS circuits for high-speed signal processing. Fully depleted-silicon on insulator (FD-SOI) MOSFETs are very attractive devices for gas sensing due to their amplification capability when operated in the sub-threshold regime which is the strongest asset of these devices with respect to the FET-based gas sensor technology. In addition these devices are of a high interest in terms of integration density due to their small size. Moreover FD-SOI FETs is a mature and well-modelled technology. We focus on the functionalization of the front gate of a FD-SOI MOSFET as a demonstration of the DGtransistor- based gas sensor. Kelvin probe has been the privileged technique for the investigation of FET-based gas sensors’ sensitive material via measuring the work function variation induced by gas species adsorption. In this work an alternative technique to investigate gas sensitivity of materials suitable for implementation in DG-FET-based gas sensors, based on measurement of the surface charge induced by gas species adsorption is discussed. In order to increase the specific surface of the sensing electrode, a novel concept of functionalized gate surface texturing suitable for FET-based gas sensors are presented. It is based on the spray coating of a multi-walled-carbon nanotubes (MW-CNTs) suspension to deposit a MW-CNT porous network as a conducting frame for the sensing material. The main objective of this Ph.D. thesis can be divided into 4 parts: (1) modelling and simulation of a DG-SET and a FD-SOI MOSFET-based gas sensor response, and estimation of the sensitivity as well as the power consumption; (2) investigation of Pt sensitivity to hydrogen by surface charge measurement technique and development of the sensing electrode surface texturing process with CNT networks; (3) development and optimization of the DG-SET integration process in the BEOL of a CMOS substrate, and (4) FD-SOI MOSFET functionalization with Pt for H[subscript 2] sensing.

Page generated in 0.0942 seconds