• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 12
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic Displacement Demands on Self-Centering Single-Degree-of-Freedom Systems

Zhang, Changxuan 11 1900 (has links)
M.A.Sc. Thesis / Most conventional seismic design intends for key structural members to yield in order to limit seismic forces, leading to structural damage after a major earthquake. To minimize this structural damage, self-centering systems are being developed. But how to estimate the peak seismic displacement of a self-centering system remains a problem for practical design. This thesis addresses this need by presenting a parametric study on the seismic displacement demands of single-degree-of-freedom (SDOF) systems with flag-shaped hysteresis considering 13,440,000 nonlinear time history analyses. Ground motion records that represent seismic hazards in active seismic regions with stiff soil and rock site conditions are used. The influences of the four independent parameters that define a flag-shaped hysteresis are presented in terms of median displacement ratios, facilitating the design-level estimation of nonlinear displacement demands on self-centering systems from the spectra displacements of elastic systems. The influence of initial period on self-centering systems is similar to its influence on traditional systems with elastoplastic hysteresis, but a much lower linear limit can be adopted for self-centering systems while achieving acceptable peak displacements. Supplemental energy dissipation suppresses the peak displacement but additional energy dissipation becomes less effective as more is added. The effect of nonlinear stiffness is small as long as it is positive and close to zero, but a negative nonlinear stiffness can lead to unstable response. Self-centering systems located on rock sites usually have smaller displacement demands than those on stiff soil sites. When the damping ratio is increased or decreased, the displacement ratios do not necessarily decrease or increase consistently. A tangent stiffness proportional damping model is considered, leading to a significant increase in displacement demands but similar overall trends. Based on the observations, regression analysis is used to develop a simplified equation that approximates the median inelastic displacement ratios of self-centering systems for design. / Thesis / Master of Applied Science (MASc)
2

Development of software architecture to investigate bridge security

Bui, Joeny Quan 04 March 2013 (has links)
After September 11, 2001, government officials and the engineering community have devoted significant time and resources to protect the country from such attacks again. Because highway infrastructure plays such a critical role in the public’s daily life, research has been conducted to determine the resiliency of various bridge components subjected to blast loads. While more tests are needed, it is now time to transfer the research into tools to be used by the design community. The development of Anti-Terrorism Planner for Bridges (ATP-Bridge), a program intended to be used by bridge engineers and planners to investigate blast loads against bridges, is explained in this thesis. The overall project goal was to build a program that can incorporate multiple bridge components while still maintaining a simple, user-friendly interface. This goal was achieved by balancing three core areas: constraining the graphical user interface (GUI) to similar themes across the program, allowing flexibility in the creation of the numerical models, and designing the data structures using object-oriented programming concepts to connect the GUI with the numerical models. An example of a solver (prestressed girder with advanced SDOF analysis model) is also presented to illustrate a fast-running algorithm. The SDOF model incorporates the development of a moment-curvature response curve created by a layer-by-layer analysis, a non-linear static analysis accounting for both geometric non-linearity as well as material non-linearity, and a Newmark-beta-based SDOF analysis. The results of the model return the dynamic response history and the amount of damage. ATP-Bridge is the first software developed that incorporates multiple bridge components into one user-friendly engineering tool for protecting bridge structures against terrorist threats. The software is intended to serve as a synthesis of state-of-the-art knowledge, with future updates made to the program as more research becomes available. In contrast to physical testing and high-fidelity finite element simulations, ATP-Bridge uses less time-consuming, more cost effective numerical models to generate dynamic response data and damage estimates. With this tool, engineers and planners will be able to safeguard the nation’s bridge inventory and, in turn, reinforce the public’s trust. / text
3

指数ウィンドウを用いたモードパラメータ同定法の提案

畔上, 秀幸, Azegami, Hideyuki, 沖津, 昭慶, Okitsu, Akiyoshi, 備前, 和之, Bizen, Kazuyuki 11 1900 (has links)
No description available.
4

Behaviour of Cross-Laminated Timber Subjected to Blast Loading

Poulin, Mathieu Michael 09 January 2019 (has links)
Heavy timber construction is emerging as a viable alternative to conventional building materials, such as steel and concrete, for mid- and high rise structures. With the increasing presence of timber structures at or near potential targets comes an increased risk for damage to the structure and more importantly human casualties. The current provisions related to wood in the blast code (CSA, 2012) are limited and based on general understanding of the material behaviour rather than thorough research studies. Also, the standard does not clearly distinguish between the various types of engineered wood products. A study was undertaken to assess the behaviour of cross-laminated timber panels subjected to simulated blast loading using a shock tube apparatus. More specifically, the aim of this study was to investigate the behaviour of CLT panels subjected to static and dynamic loads to determine a dynamic increase factor in order to quantify high strain rate effects on this material. Testing was completed on a total of 18 CLT panels, with panel thicknesses of 105 and 175 mm corresponding to a 3-ply and 5-ply panel, respectively. An average dynamic increase factor of 1.28 on the resistance and no apparent increase in stiffness from static to dynamic loading were observed. Two resistance material predictive models that account for high strain-rate effects and the experimentally observed post-peak residual behavior were developed. A single degree-of-freedom model was validated using full-scale simulated blast load tests, and the predictions were found to match well with the experimental displacement-time histories.
5

Simulation and experimental study for vibration analysis on rotating machinery

Zainal, Mohd Shafiq Sharhan bin January 2020 (has links)
This student thesis aims to analyze the unbalance on rotating machinery by simulation and experimental. The machinery flywheel rotation is modelled as a Single Degree of Freedom (SDOF) and Multi Degree of Freedom (MDOF) system. The model rotation unbalance is simulated by MATLAB. Then the vibration measurement is taken by experimental. In addition, the tachometer is used to determine the flywheel speed calibration. Finally, the rotating unbalance reduction simulation is performed with different parameter value to determine an optimum level of machinery rotation vibration. Unbalance on rotating machinery causes a harmful influence on the environment and machinery. The root cause of rotating unbalance is determined by the simulation and experimental analysis. The analysis result is used as an indicator for predicting machinery breakdown and estimating the correct predictive maintenance action for the machinery. In this project, the simulation and experimental analysis were carried out on a rotating component of the KICKR Snap Bike Trainer. The simulation and numerical analysis are performed by MATLAB programme. On the experimental part, the vibration measurement method and results were discussed. The suggestion of unbalance reduction were recommended base on measurement and vibration analysis results.
6

<b>Blast Resistant Design of Two-Way Steel-Plate Composite (SC) Panels</b>

Joshua R Harmon (11321394) 22 November 2023 (has links)
<p dir="ltr">SC walls have emerged as an advantageous alternative to reinforced concrete (RC) construction for blast resistant structures. SC walls typically consist of shop fabricated steel modules which can be erected on site and filled with concrete, without additional formwork setup or removal. The steel modules typically consist of steel faceplates, tie bars between faceplates, and optional shear studs. SC members offer advantages in strength, ductility, constructability, and construction schedule when compared with RC. The behavior of SC structures have been previously demonstrated and adopted into many building design codes, but there is a knowledge gap on the post-elastic behavior of SC members in two-way bending. The desire to use SC walls for blast resistant design motivates the need to study this behavior for SC walls and slabs. In this study, the behavior of SC panels in two-way bending was evaluated by using analytical, experimental, and numerical methods.</p><p dir="ltr">Structural mechanics was used to develop simple predictions for the static behavior of rectangular, two-way SC panels under a uniform pressure loading. These predictions include the inelastic cross-section flexural capacity, the member static resistance function, the load-mass transformation factor for SDOF analysis, out-of-plane shear demands, and rotation demands. A quick-running SDOF computer algorithm was created to conduct blast load analysis incorporating the nonlinear member behavior predicted by mechanics.</p><p dir="ltr">The two-way bending behavior of a SC panel was experimentally investigated. A SC panel was fabricated and experimentally loaded in two-way bending until flexural failure of the panel was reached. A series of concentrated loads applied to the panel was designed to simulate the yield line pattern of a panel under a uniform applied pressure. The experimental test demonstrated the deformed shape, inelastic capacity, and progression of yield lines throughout a SC panel in two-way bending. A 2D, layered composite shell finite element analysis was benchmarked to the experimental results. The finite element modeled the inelastic flexural behavior of the SC panel, closely matching the capacity, deformed shape, and development of yield lines throughout the panel.</p><p dir="ltr">The finite element modeling approach was used to validate the SDOF predictions of two-way SC panel behavior under static and blast pressure loadings through a parametric study. Detailed comparisons of the two modeling results were made. Iso-damage pressure-impulse diagrams for multiple SC panel geometries were developed.</p>
7

Blast Retrofit of Reinforced Concrete Walls and Slabs

Jacques, Eric 01 March 2011 (has links)
Mitigation of the blast risk associated with terrorist attacks and accidental explosions threatening critical infrastructure has become a topic of great interest in the civil engineering community, both in Canada and abroad. One method of mitigating blast risk is to retrofit vulnerable structures to resist the impulsive effects of blast loading. A comprehensive re-search program has been undertaken to develop fibre reinforced polymer (FRP) retrofit methodologies for structural and non-structural elements, specifically reinforced concrete slabs and walls, subjected to blast loading. The results of this investigation are equally valid for flexure dominant reinforced concrete beams subject to blast effects. The objective of the research program was to generate a large volume of research data for the development of blast-resistant design guidelines for externally bonded FRP retrofit systems. A combined experimental and analytical investigation was performed to achieve the objectives of the program. The experimental program involved the construction and simulated blast testing of a total of thirteen reinforced concrete wall and slab specimens divided into five companion sets. These specimens were subjected to a total of sixty simulated explosions generated at the University of Ottawa Shock Tube Testing Facility. Companion sets were designed to study one- and two-way bending, as well as the performance of specimens with simply-supported and fully-fixed boundary conditions. The majority of the specimens were retrofitted with externally bonded carbon fibre reinforced polymer (CFRP) sheets to improve overall load-deformation characteristics. Specimens within each companion set were subjected to progressively increasing pressure-impulse combinations to study component behaviour from elastic response up to inelastic component failure. The blast performance of companion as-built and retrofitted specimens was quantified in terms of measured load-deformation characteristics, and observed member behaviour throughout all stages of response. The results show that externally bonded FRP retrofits are an effective retrofit technique to improve the blast resistance of reinforced concrete structures, provided that debonding of the composite from the concrete substrate is prevented. The test results also indicate that FRP retrofitted reinforced concrete structures may survive initial inbound displacements, only to failure by moment reversals during the negative displacement phase. The experimental test data was used to verify analytical techniques to model the behaviour of reinforced concrete walls and slabs subjected to blast loading. The force-deformation characteristics of one-way wall strips were established using inelastic sectional and member analyses. The force-deformation characteristics of two-way slab plates were established using commonly accepted design approximations. The response of all specimens was computed by explicit solution of the single degree of freedom dynamic equation of motion. An equivalent static force procedure was used to analyze the response of CFRP retrofitted specimens which remained elastic after testing. The predicted maximum displacements and time-to-maximum displacements were compared against experimental results. The analysis indicates that the modelling procedures accurately describe the response characteristics of both retrofitted and unretrofitted specimens observed during the experiment.
8

Blast Retrofit of Reinforced Concrete Walls and Slabs

Jacques, Eric 01 March 2011 (has links)
Mitigation of the blast risk associated with terrorist attacks and accidental explosions threatening critical infrastructure has become a topic of great interest in the civil engineering community, both in Canada and abroad. One method of mitigating blast risk is to retrofit vulnerable structures to resist the impulsive effects of blast loading. A comprehensive re-search program has been undertaken to develop fibre reinforced polymer (FRP) retrofit methodologies for structural and non-structural elements, specifically reinforced concrete slabs and walls, subjected to blast loading. The results of this investigation are equally valid for flexure dominant reinforced concrete beams subject to blast effects. The objective of the research program was to generate a large volume of research data for the development of blast-resistant design guidelines for externally bonded FRP retrofit systems. A combined experimental and analytical investigation was performed to achieve the objectives of the program. The experimental program involved the construction and simulated blast testing of a total of thirteen reinforced concrete wall and slab specimens divided into five companion sets. These specimens were subjected to a total of sixty simulated explosions generated at the University of Ottawa Shock Tube Testing Facility. Companion sets were designed to study one- and two-way bending, as well as the performance of specimens with simply-supported and fully-fixed boundary conditions. The majority of the specimens were retrofitted with externally bonded carbon fibre reinforced polymer (CFRP) sheets to improve overall load-deformation characteristics. Specimens within each companion set were subjected to progressively increasing pressure-impulse combinations to study component behaviour from elastic response up to inelastic component failure. The blast performance of companion as-built and retrofitted specimens was quantified in terms of measured load-deformation characteristics, and observed member behaviour throughout all stages of response. The results show that externally bonded FRP retrofits are an effective retrofit technique to improve the blast resistance of reinforced concrete structures, provided that debonding of the composite from the concrete substrate is prevented. The test results also indicate that FRP retrofitted reinforced concrete structures may survive initial inbound displacements, only to failure by moment reversals during the negative displacement phase. The experimental test data was used to verify analytical techniques to model the behaviour of reinforced concrete walls and slabs subjected to blast loading. The force-deformation characteristics of one-way wall strips were established using inelastic sectional and member analyses. The force-deformation characteristics of two-way slab plates were established using commonly accepted design approximations. The response of all specimens was computed by explicit solution of the single degree of freedom dynamic equation of motion. An equivalent static force procedure was used to analyze the response of CFRP retrofitted specimens which remained elastic after testing. The predicted maximum displacements and time-to-maximum displacements were compared against experimental results. The analysis indicates that the modelling procedures accurately describe the response characteristics of both retrofitted and unretrofitted specimens observed during the experiment.
9

Blast Retrofit of Reinforced Concrete Walls and Slabs

Jacques, Eric 01 March 2011 (has links)
Mitigation of the blast risk associated with terrorist attacks and accidental explosions threatening critical infrastructure has become a topic of great interest in the civil engineering community, both in Canada and abroad. One method of mitigating blast risk is to retrofit vulnerable structures to resist the impulsive effects of blast loading. A comprehensive re-search program has been undertaken to develop fibre reinforced polymer (FRP) retrofit methodologies for structural and non-structural elements, specifically reinforced concrete slabs and walls, subjected to blast loading. The results of this investigation are equally valid for flexure dominant reinforced concrete beams subject to blast effects. The objective of the research program was to generate a large volume of research data for the development of blast-resistant design guidelines for externally bonded FRP retrofit systems. A combined experimental and analytical investigation was performed to achieve the objectives of the program. The experimental program involved the construction and simulated blast testing of a total of thirteen reinforced concrete wall and slab specimens divided into five companion sets. These specimens were subjected to a total of sixty simulated explosions generated at the University of Ottawa Shock Tube Testing Facility. Companion sets were designed to study one- and two-way bending, as well as the performance of specimens with simply-supported and fully-fixed boundary conditions. The majority of the specimens were retrofitted with externally bonded carbon fibre reinforced polymer (CFRP) sheets to improve overall load-deformation characteristics. Specimens within each companion set were subjected to progressively increasing pressure-impulse combinations to study component behaviour from elastic response up to inelastic component failure. The blast performance of companion as-built and retrofitted specimens was quantified in terms of measured load-deformation characteristics, and observed member behaviour throughout all stages of response. The results show that externally bonded FRP retrofits are an effective retrofit technique to improve the blast resistance of reinforced concrete structures, provided that debonding of the composite from the concrete substrate is prevented. The test results also indicate that FRP retrofitted reinforced concrete structures may survive initial inbound displacements, only to failure by moment reversals during the negative displacement phase. The experimental test data was used to verify analytical techniques to model the behaviour of reinforced concrete walls and slabs subjected to blast loading. The force-deformation characteristics of one-way wall strips were established using inelastic sectional and member analyses. The force-deformation characteristics of two-way slab plates were established using commonly accepted design approximations. The response of all specimens was computed by explicit solution of the single degree of freedom dynamic equation of motion. An equivalent static force procedure was used to analyze the response of CFRP retrofitted specimens which remained elastic after testing. The predicted maximum displacements and time-to-maximum displacements were compared against experimental results. The analysis indicates that the modelling procedures accurately describe the response characteristics of both retrofitted and unretrofitted specimens observed during the experiment.
10

Investigating the Response of Light-Frame Wood Stud Walls with and Without Boundary Connections to Blast Loads

Viau, Christian January 2016 (has links)
Most of the research on high strain rate effects on wood since the 1950s has been on impact loading. Very limited work has been conducted on full-scale wood specimens under blast loading. In North America, the prevalence of these structures makes them susceptible to unintended blast effects. The question on how to retrofit and protect these structures against blast loads has still not been addressed adequately, and design provisions for new wood structures against blast are not comprehensive. Far-field explosion effects were simulated using the University of Ottawa shock tube. Twenty-five light-frame wood stud walls were tested dynamically. The research program aimed to determine the response of light-frame wood stud walls to blast loads that correspond to the heavy to blow-out damage levels. The results showed that, under idealized simply supported end conditions, the stud walls failed in flexure. Under heavier loads, ripping of sheathing commonly used in light-frame wood structures was observed, which caused premature failure of the assembly because the load was not fully distributed to the studs. The use of stiffer sheathing or reinforcing the sheathing provided a better load path and the wall was capable of reaching its full capacity. The effect of using realistic boundary connection details was investigated, and the results showed that typical connection detailing performed poorly under blast loads. Designed steel brackets connecting the studs to the rim-joist allowed for the studs to reach their full capacity. An analytical single degree-of-freedom model was generated using material properties obtained from static testing. The model was validated using the experimental results from the shock tube testing. Also, a catcher system consisting of welded-wire-mesh was incorporated into the wall system in order to diminish debris throw.

Page generated in 0.0588 seconds