Spelling suggestions: "subject:"singleobjective optimization"" "subject:"being.objective optimization""
1 |
Multi-objective optimization using Genetic AlgorithmsAmouzgar, Kaveh January 2012 (has links)
In this thesis, the basic principles and concepts of single and multi-objective Genetic Algorithms (GA) are reviewed. Two algorithms, one for single objective and the other for multi-objective problems, which are believed to be more efficient are described in details. The algorithms are coded with MATLAB and applied on several test functions. The results are compared with the existing solutions in literatures and shows promising results. Obtained pareto-fronts are exactly similar to the true pareto-fronts with a good spread of solution throughout the optimal region. Constraint handling techniques are studied and applied in the two algorithms. Constrained benchmarks are optimized and the outcomes show the ability of algorithm in maintaining solutions in the entire pareto-optimal region. In the end, a hybrid method based on the combination of the two algorithms is introduced and the performance is discussed. It is concluded that no significant strength is observed within the approach and more research is required on this topic. For further investigation on the performance of the proposed techniques, implementation on real-world engineering applications are recommended.
|
2 |
OPTIMAL DISTRIBUTED GENERATION SIZING AND PLACEMENT VIA SINGLE- AND MULTI-OBJECTIVE OPTIMIZATION APPROACHESDarfoun, Mohamed 09 July 2013 (has links)
Numerous advantages attained by integrating Distributed Generation (DG) in distribution systems. These advantages include decreasing power losses and improving voltage profiles. Such benefits can be achieved and enhanced if DGs are optimally sized and located in the systems. In this thesis, the optimal DG placement and sizing problem is investigated using two approaches. First, the optimization problem is treated as single-objective optimization problem, where the system’s active power losses are considered as the objective to be minimized. Secondly, the problem is tackled as a multi-objective one, focusing on DG installation costs. These problems are formulated as constrained nonlinear optimization problems using the Sequential Quadratic Programming method. A weighted sum method and a fuzzy decision-making method are presented to generate the Pareto optimal front and also to obtain the best compromise solution. Single and multiple DG installation cases are studied and compared to a case without DG, and a 15-bus radial distribution system and 33-bus meshed distribution system are used to demonstrate the effectiveness of the proposed methods.
|
3 |
Darbų grafikų sveikatos priežiūros įstaigose optimizavimas / Heuristic Algorithms for Nurse Rostering ProblemLiogys, Mindaugas 30 September 2013 (has links)
Šioje disertacijoje nagrinėjamas sveikatos priežiūros įstaigos darbuotojų darbų grafikų optimizavimo uždavinys, kuris formuluojamas ir sprendžiamas, remiantis vienos didžiausių Lietuvos sveikatos priežiūros įstaigų, realiais duomenimis. Disertacijoje apžvelgiami darbų grafikų optimizavimo uždaviniai bei jų sprendimo metodai, atlikta naujausių šaltinių, tiriančių panašius uždavinius, analizė. Antrame skyriuje nagrinėjamasis darbų grafikų optimizavimo uždavinys suformuluotas matematiškai. Pateikiamos dvi formuluotės: vienakriterio ir daugiakriterio optimizavimo uždavinio. Aprašomos sąlygos, kurias turi tenkinti sudaromasis darbų grafikas. Trečiajame skyriuje nagrinėjami metodai, tiek vienakriteriams, tiek daugiakriteriams uždaviniams spręsti. Pasiūlytas naujas metodas, kuris efektyviau nei kiti nagrinėti metodai sprendžia šioje disertacijoje suformuluotą uždavinį. Ketvirtame skyriuje pateikiami pasiūlyto metodo eksperimentinio tyrimo rezultatai. Pirmoje skyriaus dalyje analizuojami rezultatai gauti, sprendžiant vienakriterį optimizavimo uždavinį, o antroje dalyje – daugiakriterį optimizavimo uždavinį. Disertacijos tyrimų rezultatai buvo pristatyti respublikinėje konferencijoje ir trijose tarptautinėse konferencijose bei publikuoti trijuose mokslo žurnaluose. / In this dissertation nurse rostering problem is investigated. The formulation of the problem is based on real-world data of one of the largest healthcare centers in Lithuania. Most recent publications that tackle the nurse rostering problem and the methods for solving the nurse rostering problem are reviewed in this dissertation. The mathematical formulation of the single objective and the multi-objective nurse rostering problem is presented and the requirements for the roster are described in the second chapter. In the third chapter, the methods for solving the single objective and the multi-objective nurse rostering problem are described. A new method for solving the single objective and the multi-objective nurse rostering problem is proposed in the third chapter. In the fourth chapter, the experimental results of our proposed method are introduced. In the first section of this chapter, the results gathered solving single-objective optimization problem are analyzed, and in the second section of this chapter, the results gathered solving multi-objective optimization problem are analyzed. Dissertation research results were presented at one national conference and three international conferences and published in three scientific journals.
|
4 |
Solving Multiple Objective Optimization Problem using Multi-Agent Systems: A case in Logistics ManagementPennada, Venkata Sai Teja January 2020 (has links)
Background: Multiple Objective Optimization problems(MOOPs) are common and evident in every field. Container port terminals are one of the fields in which MOOP occurs. In this research, we have taken a case in logistics management and modelled Multi-agent systems to solve the MOOP using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Objectives: The purpose of this study is to build AI-based models for solving a Multiple Objective Optimization Problem occurred in port terminals. At first, we develop a port agent with an objective function of maximizing throughput and a customer agent with an objective function of maximizing business profit. Then, we solve the problem using the single-objective optimization model and multi-objective optimization model. We then compare the results of both models to assess their performance. Methods: A literature review is conducted to choose the best algorithm among the existing algorithms, which were used previously in solving other Multiple Objective Optimization problems. An experiment is conducted to know how well the models performed to solve the problem so that all the participants are benefited simultaneously. Results: The results show that all three participants that are port, customer one and customer two have gained profits by solving the problem in multi-objective optimization model. Whereas in a single-objective optimization model, a single participant has achieved earnings at a time, leaving the rest of the participants either in loss or with minimal profits. Conclusion: We can conclude that multi-objective optimization model has performed better than the single-objective optimization model because of the impartial results among the participants.
|
5 |
Optimal Design of Socially and Environmentally Efficient Reinforced Concrete Precast Modular Road Frames under Constrained BudgetsRuiz Vélez, Andrés 10 January 2025 (has links)
Tesis por compendio / [ES] La infraestructura de transporte es clave para el desarrollo humano, impulsando la industria y la evolución social al mejorar la interacción y conectividad. La construcción de infraestructuras actúa como catalizador de transformaciones socioeconómicas, fomentando economías locales y facilitando el movimiento de recursos y fuerza laboral. La creciente conciencia sobre los efectos negativos de las prácticas insostenibles en la construcción exige un cambio hacia métodos más responsables. Tradicionalmente, la viabilidad económica ha sido prioritaria en la ingeniería estructural, pero ahora se da mayor énfasis a los impactos del ciclo de vida. Aunque esto representa un avance hacia los objetivos de desarrollo sostenible, no abarca completamente la complejidad de la sostenibilidad.
Esta tesis presenta el proceso para fundamentar un marco de diseño que integre la sostenibilidad del ciclo de vida en infraestructuras de transporte. Se sugiere un enfoque modular prefabricado para estructuras viales como una opción más atractiva frente a los métodos tradicionales in-situ. El diseño estructural, así como los procesos ambientales y sociales, se sintetizan en un modelo matemático avanzado. Esto permite la optimización mono-objetivo y multiobjetivo junto a algoritmos multicriterio. La aplicación de métodos de optimización exacta es inviable por la diversidad de variables, por lo que se recurre a metaheurísticas híbridas para minimizar el costo estructural en un enfoque mono-objetivo. Las metaheurísticas de recocido simulado y aceptación por umbrales con cadenas extensas ofrecen resultados de calidad, aunque requieren gran esfuerzo computacional. La versión híbrida del recocido simulado con un operador de mutación, común en algoritmos poblacionales, logra soluciones comparables con menor esfuerzo. La hibridación potencia las capacidades exploratorias de estos algoritmos.
El análisis del ciclo de vida de configuraciones óptimas muestra claras ventajas ambientales del enfoque modular prefabricado frente a la construcción in situ. Sin embargo, las implicaciones sociales son más complejas, resaltando la importancia de incluir los impactos del ciclo de vida como objetivos en la optimización. Esto también subraya la necesidad de técnicas multicriterio para evaluar y clasificar alternativas, asegurando una consideración equilibrada de los impactos ambientales y sociales.
Esta investigación desarrolla operadores de cruce, mutación y reparación para discretizar el problema de optimización. Estos dotan a algoritmos genéticos y evolutivos de la capacidad de manejar la complejidad de la optimización multiobjetivo. El operador de reparación estadístico es especialmente eficaz cuando se combina con los algoritmos NSGA-II, NSGA-III y RVEA. A pesar de sus diferencias, la técnica de toma de decisiones FUCA genera clasificaciones idénticas a la ponderación aditiva simple, al igual que TOPSIS, PROMETHEE y VIKOR. Un proceso basado en la teoría de la entropía proporciona a estas técnicas un enfoque metódico para la ponderación de criterios. La integración de algoritmos de optimización multiobjetivo con técnicas de decisión multicriterio en un marco basado en modelos matemáticos culmina en una clasificación de diseños óptimos no dominados, que equilibran las dimensiones económica, ambiental y social de la sostenibilidad. / [CA] La infraestructura de transport és clau per al desenrotllament humà, impulsant la indústria i l'evolució social en millorar la interacció i connectivitat. La construcció d'infraestructures actua com a catalitzador de transformacions socioeconòmiques, fomentant economies locals i facilitant el moviment de recursos i força laboral. La creixent consciència sobre els efectes negatius de les pràctiques insostenibles en la construcció exigix un canvi cap a mètodes més responsables. Tradicionalment, la viabilitat econòmica ha sigut prioritària en l'enginyeria estructural, però ara es dona major èmfasi als impactes del cicle de vida. Encara que això representa un avanç cap als objectius de desenrotllament sostenible, no abasta completament la complexitat de la sostenibilitat.
Esta tesi presenta el procés per a fonamentar un marc de disseny que integre la sostenibilitat del cicle de vida en infraestructures de transport. Se suggerix un enfocament modular prefabricat per a estructures viàries com una opció més atractiva enfront dels mètodes tradicionals *in-*situ. El disseny estructural, així com els processos ambientals i socials, se sintetitzen en un model matemàtic avançat. Això permet l'optimització bonic-objectiu i multiobjectiu al costat d'algorismes multicriteri. L'aplicació de mètodes d'optimització exacta és inviable per la diversitat de variables, per la qual cosa es recorre a *metaheurísticas híbrides per a minimitzar el cost estructural en un enfocament bonic-objectiu. Les *metaheurísticas de recuita simulada i acceptació per llindars amb cadenes extenses oferixen resultats de qualitat, encara que requerixen gran esforç computacional. La versió híbrida de la recuita simulada amb un operador de mutació, comuna en algorismes poblacionals, aconseguix solucions comparables amb menor esforç. La hibridació potencia les capacitats exploratòries d'estos algorismes.
L'anàlisi del cicle de vida de configuracions òptimes mostra clares avantatges ambientals de l'enfocament modular prefabricat enfront de la construcció in situ. No obstant això, les implicacions socials són més complexes, ressaltant la importància d'incloure els impactes del cicle de vida com a objectius en l'optimització. Això també subratlla la necessitat de tècniques multicriteri per a avaluar i classificar alternatives, assegurant una consideració equilibrada dels impactes ambientals i socials.
Esta investigació desenrotlla operadors d'encreuament, mutació i reparació per a *discretizar el problema d'optimització. Estos doten a algorismes genètics i evolutius de la capacitat de manejar la complexitat de l'optimització multiobjectiu. L'operador de reparació estadístic és especialment eficaç quan es combina amb els algorismes *NSGA-II, *NSGA-III i *RVEA. Malgrat les seues diferències, la tècnica de presa de decisions *FUCA genera classificacions idèntiques a la ponderació additiva simple, igual que *TOPSIS, *PROMETHEE i *VIKOR. Un procés basat en la teoria de l'entropia proporciona a estes tècniques un enfocament metòdic per a la ponderació de criteris. La integració d'algorismes d'optimització multiobjectiu amb tècniques de decisió multicriteri en un marc basat en models matemàtics culmina en una classificació de dissenys òptims no dominats, que equilibren les dimensions econòmica, ambiental i social de la sostenibilitat. / [EN] Transportation infrastructure is essential for human development, driving industry growth and societal evolution through enhanced interaction and connectivity. Transportation infrastructure construction acts as a catalyst for socio-economic transformations, stimulating local economies and streamlining the flow of workforce and resources. Growing recognition of the detrimental effects of unsustainable practices in construction engineering necessitates a shift towards more responsible methodologies. Historically, economic viability has dominated the priorities of structural engineering, but there is now an increasing emphasis on evaluating the life cycle impacts of projects. While this shift marks progress towards aligning structural design with sustainability goals, it does not fully capture the intricate and multifaceted nature of life cycle sustainability.
This doctoral thesis systematically unfolds the process of conceiving and substantiating a design framework that incorporates life cycle sustainability into the construction of transportation infrastructure. A precast modular approach is proposed for road frame projects as an attractive alternative to conventional cast-in-place methods. The structural design process and life cycle environmental and social impacts of the structure are encapsulated within a sophisticated mathematical model, facilitating the application of both single and multi-objective optimization alongside decision-making algorithms. Exact optimization methods are not a viable resort due to the extensive array of optimization variables and the mixed integer nature of the problem. Thus, the research deploys trajectory-based local search and hybrid metaheuristics for the single-objective cost-minimization of the structure. Simulated annealing and threshold accepting metaheuristics adjusted with longer chain lengths achieve high-quality results but demand substantial computational resources. A hybrid version of simulated annealing, incorporating a mutation operator typically found in population-based algorithms, reaches comparable solutions with less computational effort. The hybridization of metaheuristics is identified as an effective strategy to enhance the exploratory capacities of these algorithms.
The life cycle assessment of diverse cost-optimized road frame layouts reveals distinct environmental advantages of the precast modular approach compared to the conventional cast-in-place method. However, the social implications present a more intricate relationship, emphasizing the importance of including life cycle impacts as objective functions in the optimization process. Additionally, this underscores the necessity to involve multi-criteria decision-making techniques to effectively score and rank alternatives, ensuring a balanced consideration of environmental and social impacts in the decision-making framework.
This research employs innovative crossover, polynomial mutation, and repair operators to effectively discretize the optimization problem, equipping novel genetic and evolutionary algorithms with the capabilities to tackle the mixed integer nature of the multi-objective optimization problem. The statistical-based repair operator algorithm is notably successful when incorporated with the non-dominated sorting genetic algorithms II and III and the reference vector-guided evolutionary algorithm. Despite their operational variances, the fair un choix adequàt decision-making technique yields the same rankings as the simple additive weighting method. This alignment also extends to the technique for order of preference by similarity to ideal solution, preference ranking for organization method for enrichment evaluation and multi-criteria optimization and compromise solution algorithms. An entropy theory-based strategy endows these multi-criteria decision-making techniques with a methodical and unbiased approach to criteria weighting. Integrating multi-objective optimization algorithms with multi-crite / Ruiz Vélez, A. (2024). Optimal Design of Socially and Environmentally Efficient Reinforced Concrete Precast Modular Road Frames under Constrained Budgets [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213837 / Compendio
|
Page generated in 0.1379 seconds