Spelling suggestions: "subject:"singular integral imperators"" "subject:"singular integral 2operators""
1 |
Schwarz Problem For Complex Partial Differential EquationsAksoy, Umit 01 December 2006 (has links) (PDF)
This study consists of four chapters. In the first chapter we
give some historical background of the problem, basic definitions
and properties. Basic integral operators of complex analysis and
and Schwarz problem for model equations are presented in Chapter
2. Chapter 3 is devoted to the investigation of the properties of
a class of strongly singular integral operators. In the last
chapter we consider the Schwarz boundary value problem for the
general partial complex differential equations of higher order.
|
2 |
SINGULAR INTEGRAL OPERATORS ASSOCIATED WITH ELLIPTIC BOUNDARY VALUE PROBLEMS IN NON-SMOOTH DOMAINSAwala, Hussein January 2017 (has links)
Many boundary value problems of mathematical physics are modelled by elliptic differential operators L in a given domain Ω . An effective method for treating such problems is the method of layer potentials, whose essence resides in reducing matters to solving a boundary integral equation. This, in turn, requires inverting a singular integral operator, naturally associated with L and Ω, on appropriate function spaces on ƌΩ. When the operator L is of second order and the domain Ω is Lipschitz (i.e., Ω is locally the upper-graph of a Lipschitz function) the fundamental work of B. Dahlberg, C. Kenig, D. Jerison, E. Fabes, N. Rivière, G. Verchota, R. Brown, and many others, has opened the door for the development of a far-reaching theory in this setting, even though several very difficult questions still remain unanswered. In this dissertation, the goal is to solve a number of open questions regarding spectral properties of singular integral operators associated with second and higher-order elliptic boundary value problems in non-smooth domains. Among other spectral results, we establish symmetry properties of harmonic classical double layer potentials associated with the Laplacian in the class of Lipschitz domains in R2. An array of useful tools and techniques from Harmonic Analysis, Partial Differential Equations play a key role in our approach, and these are discussed as preliminary material in the thesis: --Mellin Transforms and Fourier Analysis; --Calderón-Zygmund Theory in Uniformly Rectifiable Domains; -- Boundary Integral Methods. Chapter four deals with proving invertibility properties of singular integral operators naturally associated with the mixed (Zaremba) problem for the Laplacian and the Lamé system in infinite sectors in two dimensions, when considering their action on the Lebesgue scale of p integrable functions, for 1 < p < ∞. Concretely, we consider the case in which a Dirichlet boundary condition is imposed on one ray of the sector, and a Neumann boundary condition is imposed on the other ray. In this geometric context, using Mellin transform techniques, we identify the set of critical integrability indexes p for which the invertibility of these operators fails. Furthermore, for the case of the Laplacian we establish an explicit characterization of the Lp spectrum of these operators for each p є (1,∞), as well as well-posedness results for the mixed problem. In chapter five, we study spectral properties of layer potentials associated with the biharmonic equation in infinite quadrants in two dimensions. A number of difficulties have to be dealt with, the most significant being the more complex nature of the singular integrals arising in this 4-th order setting (manifesting itself on the Mellin side by integral kernels exhibiting Mellin symbols involving hyper-geometric functions). Finally, chapter six, deals with spectral issues in Lipschitz domains in two dimensions. Here we are able to prove the symmetry of the spectra of the double layer potentials associated with the Laplacian. This is in essence a two-dimensional phenomenon, as known examples show the failure of symmetry in higher dimensions. / Mathematics
|
3 |
Local Tb theorems and Hardy type inequalitiesRoutin, Eddy 06 December 2011 (has links) (PDF)
In this thesis, we study local Tb theorems for singular integral operators in the setting of spaces of homogeneous type. We give a direct proof of the local Tb theorem with L^2 integrability on the pseudo- accretive system. Our argument relies on the Beylkin-Coifman-Rokhlin algorithm applied in adapted Haar wavelet basis and some stopping time results. Motivated by questions of S. Hofmann, we extend it to the case when the integrability conditions are lower than 2, with an additional weak boundedness type hypothesis, which incorporates some Hardy type inequalities. We study the possibility of relaxing the support conditions on the pseudo-accretive system to a slight enlargement of the dyadic cubes. We also give a result in the case when, for practical reasons, hypotheses on the pseudo-accretive system are made on balls rather than dyadic cubes. Finally we study the particular case of perfect dyadic operators for which the proof gets much simpler. Our argument gives us the opportunity to study Hardy type inequalities. The latter are well known in the Euclidean setting, but seem to have been overlooked in spaces of homogeneous type. We prove that they hold without restriction in the dyadic setting. In the more general case of a ball B and its corona 2B\B, they can be obtained from some geometric conditions relative to the distribution of points in the homogeneous space. For example, we prove that some relative layer decay property suffices. We also prove that this property is implied by the monotone geodesic property of Tessera. Finally, we give some explicit examples and counterexamples in the complex plane to illustrate the relationship between the geometry of the homogeneous space and the validity of the Hardy type inequalities.
|
4 |
Local Tb theorems and Hardy type inequalities / Théorèmes Tb locaux et inégalités de types HardyRoutin, Eddy 06 December 2011 (has links)
On étudie dans cette thèse les théorèmes Tb locaux pour les opérateurs d’intégrale singulière, dans le cadre des espaces de type homogène. On donne une preuve directe du théorème Tb local avec hypothèses d’intégrabilité L^2 sur le système pseudo-accrétif. Notre argument repose sur l’algorithme Beylkin-Coifman-Rokhlin, appliqué dans des bases d’ondelettes de Haar adaptées, et sur des résultats de temps d’arrêt. Motivés par une question posée par S. Hofmann, on étend notre résultat au cas où les conditions d’intégrabilité sont inférieures à 2, avec une hypothèse supplémentaire de type faible bornitude, qui incorpore des inégalités de type Hardy. On étudie la possibilité d’affaiblir les conditions de support du système pseudo-accrétif en l’autorisant à être défini sur un petit élargissement des cubes dyadiques. On donne également un résultat dans le cas où, pour des raisons pratiques, les hypothèses sur le système pseudo-accrétif sont faites sur les boules au lieu des cubes dyadiques. Enfin, on s’intéresse au cas des opérateurs parfaitement dyadiques pour lesquels la démonstration est grandement simplifiée. Notre argument nous donne l’opportunité de nous intéresser aux inégalités de type Hardy. Ces estimations sont bien connues des spécialistes dans le cadre Euclidien, mais elles ne semblent pas avoir été étudiées dans les espaces de type homogène. On montre qu’elles sont vérifiées sans restriction dans le cadre dyadique. Dans le cas plus général d’une boule B et de sa couronne 2B\B, elles peuvent être déduites de certaines conditions géométriques de distribution des points dans l’espace de type homogène. Par exemple, on prouve qu’une condition de petite couche relative est suffisante. On montre aussi que cette propriété est impliquée par la propriété de monotonie géodésique de Tessera. Enfin, on présente quelques exemples et contre-exemples explicites dans le plan complexe, afin d’illustrer le lien entre la géométrie de l’espace de type homogène et la validité des inégalités de type Hardy. / In this thesis, we study local Tb theorems for singular integral operators in the setting of spaces of homogeneous type. We give a direct proof of the local Tb theorem with L^2 integrability on the pseudo- accretive system. Our argument relies on the Beylkin-Coifman-Rokhlin algorithm applied in adapted Haar wavelet basis and some stopping time results. Motivated by questions of S. Hofmann, we extend it to the case when the integrability conditions are lower than 2, with an additional weak boundedness type hypothesis, which incorporates some Hardy type inequalities. We study the possibility of relaxing the support conditions on the pseudo-accretive system to a slight enlargement of the dyadic cubes. We also give a result in the case when, for practical reasons, hypotheses on the pseudo-accretive system are made on balls rather than dyadic cubes. Finally we study the particular case of perfect dyadic operators for which the proof gets much simpler. Our argument gives us the opportunity to study Hardy type inequalities. The latter are well known in the Euclidean setting, but seem to have been overlooked in spaces of homogeneous type. We prove that they hold without restriction in the dyadic setting. In the more general case of a ball B and its corona 2B\B, they can be obtained from some geometric conditions relative to the distribution of points in the homogeneous space. For example, we prove that some relative layer decay property suffices. We also prove that this property is implied by the monotone geodesic property of Tessera. Finally, we give some explicit examples and counterexamples in the complex plane to illustrate the relationship between the geometry of the homogeneous space and the validity of the Hardy type inequalities.
|
5 |
Théorie des opérateurs sur les espaces de tentes / Operator theory on tent spacesHuang, Yi 12 November 2015 (has links)
Nous donnons un mécanisme de type Calderón-Zygmund concernant la théorie de l’extrapolationpour des opérateurs d’intégrale singulière sur les espaces de tentes. Pour des opérateursde régularité maximale sur les espaces de tentes, nous donnons des résultats optimaux enexploitant la structure des opérateurs intégraux de convolution et en utilisant des estimationsde la décroissance hors-diagonale du semi-groupe ou de la famille résolvante sous-jacente.Nous appliquons des techniques précédentes d’analyse harmonique et fonctionnelle pourestimer sur les espaces de tentes certains opérateurs d’intégrale évolutionnelle, nées de l’étudedes problèmes aux limites elliptiques et des systèmes non-autonomes du premier ordre. / We give a Calderón-Zygmund type machinery concerning the extrapolation theory for thesingular integral operators on tent spaces. For maximal regularity operators on tent space, wegive some optimal results by exploiting the structure of convolution integral operators and byusing the off-diagonal decay estimates of the underlying semigroup or resolvent family.We apply the previous harmonic and functional analysis techniques to estimate on tentspaces certain evolutionary integral operators arisen from the study of boundary value ellipticproblems and first order non-autonomous systems.
|
Page generated in 0.0834 seconds