• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 358
  • 215
  • 129
  • 42
  • 39
  • 15
  • 12
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1140
  • 185
  • 177
  • 171
  • 164
  • 148
  • 144
  • 143
  • 139
  • 131
  • 126
  • 124
  • 118
  • 114
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Synthesis and Processing of Nanocrystalline Zirconium Carbide Formed by Carbothermal Reduction

Jain, Anubhav 20 August 2004 (has links)
Zirconium carbide (ZrC) powders were produced by carbothermal reduction reactions using fine-scale carbon/metal oxide mixtures as the starting materials. The reactant mixtures were prepared by pyrolytic decomposition of solution-derived precursors. The latter precursors were synthesized via hydrolysis/condensation of metal-organic compounds. The first step in the solution process involved refluxing zirconium alkoxide with 2,4 pentanedione ("acacH") in order to partially or fully convert the zirconium alkoxy groups to a chelated zirconium diketonate structure ("zirconium acac"). This was followed by the addition of water (under acidic conditions) in order to promote hydrolysis/condensation reactions. Precursors with variable carbon/metal ratios were produced by varying the concentrations of the solution reactants (i.e., the zirconium alkoxide, "acacH," water, and acid concentrations.) It was necessary to add a secondary soluble carbon source (i.e., phenolic resin or glycerol) during solution processing in order to obtain a C/Zr molar ratio close to 3 (as required for stoichiometry) in the pyrolyzed powders. The phase development during carbothermal reduction was investigated for oxide-rich carbon-deficient and slightly carbon-rich compositions. The reaction was substantially completed after heat treatments in the range of ~1400-1500oC. The crystallite sizes were in the range of ~100-130 nm. However, some oxygen dissolved in the lattice and some free carbon was present. Heat treatment at temperatures >1600oC was required to complete the reaction. The dry-pressed powder compacts, with varying C/Zr molar ratios, were pressureless sintered to relative densities in the range of ~98-100% at 1950oC.
192

The Study and Fabrication of Liquid Phase Sintering Microwave Dielectric Ceramics and Microwave Devices

Tzou, Wen-Cheng 03 January 2003 (has links)
Recently, the evolutions of wireless communication systems are growing rapidly to satisfy the personal communication requirements. Compact, small size, low cost, and multi-function are the major developing trends among these modern wireless communication devices. The use of ceramic materials with high permittivity can effectively reduce the sizes of microwave devices. This thesis consists of two parts: the research of microwave dielectric materials and the implementation of microstrip ceramic antennas. In the first part of the dissertation, the systematic investigations of the microstructure and microwave dielectric properties in respect of BiNbO4-based ceramics and MCAS glass-added Al2O3-TiO2 ceramics have presented. By the addition of CuO, V2O5, or CuO-V2O5 mixture, the BiNbO4 ceramics can be densified at lower sintering temperatures less than 940¢J. The excellent microwave dielectric properties are obtained as 0.5 wt% CuO or V2O5 are added as sintering aids. The exceeded additive amount or sintering temperatures will result in the appearance of abnormal grain growth and the increase of grain boundary inclusions, which will decrease the microwave dielectric properties including the quality factor (Q) and the temperature coefficient of resonant frequency (£nf). The CuO-added BiNbO4 ceramics reveal a negative £nf value and V2O5-added BiNbO4 ceramics reveal a positive one. The £nf values can be reduced to near 0 ppm/¢J by controlling the weight ratio of CuO/V2O5. Another method to reduce the £nf values to near 0 ppm/¢J is the substitution of Sm for Bi. For the (Bi1-xSmx)NbO4 ceramics, the presence of the £]-form of (Bi1-xSmx)NbO4 ceramics will affect the grain growth, density, Q¡Ñf values and £nf values, but that has no apparent effect on £`r values. On the whole, a high permittivity, an acceptable quality factor, and the temperature stable BiNbO4-based ceramic can be obtained. As for (1-x)Al2O3-xTiO2 ceramics, the addition of MCAS glass can lower the sintering temperatures of (1-x)Al2O3-xTiO2 ceramics from 1500¢J to 1300¢J. And the £nf value can be adjusted to near zero by controlling the TiO2 content and sintering temperature. The appearance of Al2TiO5 phase, resulted from the consumption of TiO2, exhibits intense effect on the microwave dielectric properties of (1-x)Al2O3 -xTiO2 ceramics. The major contributions in this research would be the lower sintering temperatures and the near 0 ppm/¢J of £nf value. The 2wt%- MCAS-added (1-x)Al2O3-xTiO2 ceramics sintered at 1300¢J and x = 0.12 has a minimum £nf value of ¡V0.6 ppm/¢J. In the second part of the dissertation, the microstrip antennas with high permittivity BiNbO4 ceramics (£`r = 43) substrate are fabricated. The bandwidths obtained are narrow and insufficient for the WLAN application. The techniques of U-slots patch and stacked structure are used to enhance the bandwidth of the microstrip ceramic antennas by combining the two adjacent resonant modes. The results indicate that the impedance bandwidth can be enhanced from 2.3% to 5.3% by embedding double U-shaped slots in the rectangular patch, or to 4.5% by using stacked patches.
193

Pressureless sintering and oxidation resistance of zrb2 based ceramic composites

Peng, Fei 09 January 2009 (has links)
Specimens of ZrB2 containing various concentrations of B4C, SiC, TaB2, and TaSi2 were pressureless-sintered and post-hot isostatic pressed to their theoretical densities. Oxidation resistances were studied by scanning thermogravimetry over the range 1150 - 1550 degree C. SiC additions improved oxidation resistance over a broadening range of temperatures with increasing SiC content. Tantalum additions to ZrB2-B4C-SiC in the form of TaB2 and/or TaSi2 increased oxidation resistance over the entire evaluated spectrum of temperatures. TaSi2 proved to be a more effective additive than TaB2. Silicon-containing compositions formed a glassy surface layer, covering an interior oxide layer. This interior layer was less porous in tantalum-containing compositions. The oxidation resistances of ZrB2 containing SiC, TaB2, and TaSi2 additions of various concentrations was studied using isothermal thermogravimetry at 1200, 1400, and 1500 degree C, and specimens were further characterized using x-ray diffraction and electron microscopy. Increasing SiC concentration resulted in thinner glassy surface layers as well as thinner ZrO2 underlayers deficient in silica. This silica deficiency was argued to occur by a wicking process of interior-formed borosilicate liquid to the initially-formed borosilicate liquid at the surface. Small (3.32 mol%) concentrations of TaB2 additions were more effective at increasing oxidation resistance than equal additions of TaSi2. The benefit of these additives was related to the formation of zirconium-tantalum boride solid solution during sintering, which during oxidation, fragmented into fine particles of ZrO2 and TaC. These particles resisted wicking of their liquid/glassy borosilicate encapsulation, which increased overall oxidation resistance. With increasing TaB2 or TaSi2 concentration, oxidation resistance degraded, most egregiously with TaB2 additions. In these cases, zirconia dendrites appeared to grow through the glassy layers, providing conduits for oxygen migration.
194

Cinética de sinterização do combustível nuclear 'UO IND. 2.'7%'Gd IND.2'O IND. 3' : cálculo da curva mestre de sinterização /

Silva, Selma Luiza. January 2010 (has links)
Orientador: José Roberto Ribeiro Bortoleto / Banca: Luciano Pagano Junior / Banca: Andrea Paesano Junior / Resumo: O processo de sinterização de pastilhas de 'UO IND. 2.'7%'Gd IND.2'O IND. 3' tem sido investigado por muito tempo devido à sua importância na indústria nuclear e ao seu comportamento complexo durante o adensamento. Vários pesquisadores tentaram explicar este comportamento utilizando uma abordagem fenomenológica. Ainda que com algum sucesso, o comportamento na sinterização é difícil de ser previsto. A densidade final e a microestrutura da pastilha sinterizada dependem das propriedades dos pós de partida, do perfil térmico, da composição da atmosfera, da presença de aditivos, entre outras variáveis. Uma abordagem diferente do problema supera esta dificuldade com a introdução do conceito da Curva Mestre de Sinterização - CMS. A CMS do combustível nuclear 'UO IND. 2.'7%'Gd IND.2'O IND. 3' foi levantada utilizando dados de dilatometria obtidos com a taxa de aquecimento constante. Este desenvolvimento foi realizado para prever e controlar a evolução da densidade durante a etapa de sinterização. As amostras foram produzidas através da mistura do pós de 'UO IND. 2' e 'Gd IN> 2'O IND. 3', compactadas e sinterizadas em um dilatômetro a 2023 k, com diferentes taxas de aquecimento na faixa de 5 a 45 'Kmin. POT. -1', sob atmosfera de 'H IND. 2'. Com base no conceito da CMS, a previsão do adensamento foi realizada e uma boa concordância entre os valores previstos e experimental foi verificada. Foi demonstrado que o conceito da CMS pode ser utilizado para planejar um perfil de temperatura adequado, visando uma densidade final desejada, mesmo para sistemas com reações mais complexas como o 'UO IND. 2.'7%'Gd IND.2'O IND. 3'. A energia de ativação aparente do processo de sinterização pode ser estimada por este método. / Abstract: The sintering process of the 'UO IND. 2.'7%'Gd IND.2'O IND. 3' system has been investigated for a long time due to its economical importance to the nuclear industry and complex behavior during densification. Most researchers tried to describe and explain it using a phenomenological approach. Even though some light has been shed on the matter, the system sintering behavior is still very difficult to predict. The final density and microstructure of the sintered body is strongly dependent on properties of raw powders, temperature profile,, atmosphere composition, presence of sintering additives, among other process variables. A different approach to the problem overcame this difficulty by introducing the concept of the Master Sintering Curve - MSC. The MSC of the 'UO IND. 2.'7%'Gd IND.2'O IND. 3' nuclear fuel was constructed using constant heating rate dilatometry data. This development was carried out to predict and control the evolution of the density during the sintering path. The samples were produced from a dry misture of "UO IND. 2' and 2' e 'Gd IN> 2'O IND. 3' powders, pressed into compacts and sintered in a dilatometer up to 2023 K with different heating rates from 5 to 45 'Kmin. POT. -1', under a 'H IND. 2' atmosphere. Based on the MSC concept, the prediction of pellet densification was performed and it was observed a good agreement between the experimental and the predicted values. It was demonstrated that the MSC approach can be used to desing a suitable sintering temperature profile in order to obtain a desidered final density, even for reacting systems such as the 'UO IND. 2.'7%'Gd IND.2'O IND. 3', where the second phase should mostley get into solution. The apparent activation energy of sintering process could also be estimated by this method. / Mestre
195

Cinética de sinterização do combustível nuclear 'UO IND. 2.'7%'Gd IND.2''O IND. 3': cálculo da curva mestre de sinterização

Silva, Selma Luiza [UNESP] 05 March 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:19Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-03-05Bitstream added on 2014-06-13T18:40:21Z : No. of bitstreams: 1 silva_sl_me_bauru.pdf: 3711265 bytes, checksum: eb24a775c76173627880925720fa6766 (MD5) / O processo de sinterização de pastilhas de 'UO IND. 2.'7%'Gd IND.2''O IND. 3' tem sido investigado por muito tempo devido à sua importância na indústria nuclear e ao seu comportamento complexo durante o adensamento. Vários pesquisadores tentaram explicar este comportamento utilizando uma abordagem fenomenológica. Ainda que com algum sucesso, o comportamento na sinterização é difícil de ser previsto. A densidade final e a microestrutura da pastilha sinterizada dependem das propriedades dos pós de partida, do perfil térmico, da composição da atmosfera, da presença de aditivos, entre outras variáveis. Uma abordagem diferente do problema supera esta dificuldade com a introdução do conceito da Curva Mestre de Sinterização - CMS. A CMS do combustível nuclear 'UO IND. 2.'7%'Gd IND.2''O IND. 3' foi levantada utilizando dados de dilatometria obtidos com a taxa de aquecimento constante. Este desenvolvimento foi realizado para prever e controlar a evolução da densidade durante a etapa de sinterização. As amostras foram produzidas através da mistura do pós de 'UO IND. 2' e 'Gd IN> 2''O IND. 3', compactadas e sinterizadas em um dilatômetro a 2023 k, com diferentes taxas de aquecimento na faixa de 5 a 45 'Kmin. POT. -1', sob atmosfera de 'H IND. 2'. Com base no conceito da CMS, a previsão do adensamento foi realizada e uma boa concordância entre os valores previstos e experimental foi verificada. Foi demonstrado que o conceito da CMS pode ser utilizado para planejar um perfil de temperatura adequado, visando uma densidade final desejada, mesmo para sistemas com reações mais complexas como o 'UO IND. 2.'7%'Gd IND.2''O IND. 3'. A energia de ativação aparente do processo de sinterização pode ser estimada por este método. / The sintering process of the 'UO IND. 2.'7%'Gd IND.2''O IND. 3' system has been investigated for a long time due to its economical importance to the nuclear industry and complex behavior during densification. Most researchers tried to describe and explain it using a phenomenological approach. Even though some light has been shed on the matter, the system sintering behavior is still very difficult to predict. The final density and microstructure of the sintered body is strongly dependent on properties of raw powders, temperature profile,, atmosphere composition, presence of sintering additives, among other process variables. A different approach to the problem overcame this difficulty by introducing the concept of the Master Sintering Curve - MSC. The MSC of the 'UO IND. 2.'7%'Gd IND.2''O IND. 3' nuclear fuel was constructed using constant heating rate dilatometry data. This development was carried out to predict and control the evolution of the density during the sintering path. The samples were produced from a dry misture of UO IND. 2' and 2' e 'Gd IN> 2''O IND. 3' powders, pressed into compacts and sintered in a dilatometer up to 2023 K with different heating rates from 5 to 45 'Kmin. POT. -1', under a 'H IND. 2' atmosphere. Based on the MSC concept, the prediction of pellet densification was performed and it was observed a good agreement between the experimental and the predicted values. It was demonstrated that the MSC approach can be used to desing a suitable sintering temperature profile in order to obtain a desidered final density, even for reacting systems such as the 'UO IND. 2.'7%'Gd IND.2''O IND. 3', where the second phase should mostley get into solution. The apparent activation energy of sintering process could also be estimated by this method.
196

Mise au point d’un composite à fibre oxyde et matrice d’aluminosilicate de baryum modifiée / Synthesis of a barium aluminosilicate (BaAl2Si2O8) composite reinforced by oxide fibers

Billard, Romain 15 December 2015 (has links)
L’intérêt de ces travaux est de proposer un nouveau composite BaAl2Si2O8 (BAS) renforcé par des fibres d’alumine ayant des propriétés physiques similaires tout en étant plus réfractaire que les composites SiO2 / SiO2. La forme cristalline hexagonale du BAS est la forme stable à haute température. Cependant, elle est métastable en dessous de 1590 °C et il est donc nécessaire de la stabiliser pour éviter les transformations cristallines. La stabilisation de la forme hexagonale par substitution atomique, notamment par du rubidium à hauteur de 5 % atomique a été la solution retenue. Concernant le composite à matrice BAS, le choix de fibres d’alumine est motivée par la compatibilité physico-chimique BAS / alumine. Diverses voies d’élaboration de la matrice BAS et du composite BAS / alumine ont été explorées. La voie d’élaboration par « reactive spark plasma sintering » (R-SPS) apporte un gain important en termes de réduction du temps d’élaboration et de rendement. Ce gain de temps évite donc l’exposition du BAS aux hautes températures et le risque de transformation de la phase hexagonale en monoclinique. Cependant la mise en forme par SPS de matériaux oxydes, dont le BAS, est confrontée à l’existence de gradients thermiques importants au sein de l’échantillon. C’est pourquoi, la mise en oeuvre d’un moule chauffant est développée comme une alternative au SPS. Ce système, en cours d’évaluation, devrait permettre l’utilisation de cycles thermiques équivalents à ceux du SPS, tout en limitant fortement les gradients thermiques. / The main purpose of the present work is to propose a new BaAl2Si2O8 (BAS) composite reinforced with alumina fibers exhibiting similar physical properties but a higher refractoriness than SiO2 / SiO2 composites. The hexagonal crystal form of BAS is the stable one at high temperatures. However, it is metastable below 1590 °C and it is therefore necessary to stabilize it in order to prevent crystalline transformations. The stabilization of the hexagonal form by atomic substitution, including rubidium at 5 atomic % has been chosen. Regarding the matrix BAS composite, the alumina fibers selection has been justified by their low physical and chemical reactivity with this material. Several elaboration methods of the BAS matrix and of the BAS / alumina composite have been investigated. The development by "reactive spark plasma sintering" (R-SPS) brings an important benefit in terms of reduced elaboration time and yield. This saving time thus limits the BAS exposure to high temperatures and the risk of transformation into monoclinic. Nevertheless, the SPS shaping of oxide materials, including the BAS, is confronted with the presence of important thermal gradient within the sample. This is why shaping in a heating mold is currently in progress, as an alternative to the SPS. This system should allow the use the same thermal cycles as for SPS, but with lower thermal gradient.
197

Výroba dílů technologií DMLS a jejich porovnání s jinými konvenčními technologiemi z hlediska ekonomické náročnosti / Production of parts by DMLS technology and their comparison with other conventional technologies in terms of economic performance

Sekerka, Vít January 2011 (has links)
This diploma thesis presents a technology based on the gradual smelting of fine layers of metal powder by using a laser beam. It explains and describes basic terminology related to the Rapid Prototyping technology, its division and practical usage. A part of the thesis is also the fabrication of several prototype parts by Direct Metal Laser Sintering including the economical comparison of their fabrication with other conventional technologies.
198

Development of optically transparent alumina and spinel ceramics with fine microstructure / Développement de céramiques d'alumine et de spinelle optiquement transparentes à microstructure fine

Pille, Annika 19 December 2018 (has links)
Ce travail de thèse porte sur l’élaboration et l’étude des propriétés physiques de céramiques à base d’alumine optiquement transparentes et luminescentes pour lesquelles des applications sont envisagées dans le domaine des matériaux résistants aux rayonnements ionisants. L’enjeu de ce travail a consisté à obtenir un matériau qui présente simultanément une densité élevée et des tailles de grains à l’échelle nanométrique afin de conférer respectivement à la céramique des propriétés de transparence et une résistance aux radiations ionisantes par la capture et la recombinaison des charges induites au niveau des joints de grains.Des céramiques de composition Al2O3 et MgAl2O4 ont été consolidées par Spark Plasma Sintering (SPS) à partir d’alumines ultra-poreuses (UPA) d’une part, et par frittage réactif d’un mélange de précurseur Al2O3 : MgO dans un ratio 1 : 1 d’autre part. Les UPA ont été élaborés par un procédé original mis en place au LSPM. Elles ont ensuite été imprégnées par une solution de nitrate de magnésium puis calcinée à basse température afin d’obtenir le « Précurseur Nanostructuré » (PN) pour la phase spinelle MgAl2O4. Les PNs synthétisés, tout comme les UPA, ont ensuite été consolidées par SPS. Les paramètres de frittage ont été optimisés de manière à obtenir des céramiques possédant les propriétés microstructurales et physiques visées. L’effet de Ta2O5 comme inhibiteur de croissance des grains a été éprouvé sur la microstructure des céramiques élaborées. Les propriétés de transmittance ainsi que de luminescence, avant et après irradiation, des matériaux les plus prometteurs ont été mesurées et corrélées à leurs caractéristiques structurales. / This thesis deals with the elaboration and study of the physical properties of optically transparent and luminescent alumina-based ceramics for which applications are foreseen in the field of ionizing radiation resistant materials. The challenge of this work was to obtain a material that simultaneously has a high density and grain size at the nanoscale in order to give the ceramic transparency properties and resistance to ionizing radiation by capturing and recombination of induced charges at the grain boundaries. Ceramics of composition Al2O3 and MgAl2O4 were consolidated by Spark Plasma Sintering (SPS) from ultra-porous aluminas (UPA) on the one hand, and by reactive sintering of a mixture of Al2O3: MgO precursor in a ratio of 1 : 1 on the other hand. The UPAs were developed using an original process implemented at the LSPM. They were then impregnated with a solution of magnesium nitrate and then calcined at low temperature to obtain the "Nanostructured Precursor" (NP) for the spinel phase MgAl2O4. The synthesized NPs, like the UPAs, were then consolidated by SPS. The sintering parameters have been optimized to obtain ceramics with the desired microstructural and physical properties. The effect of Ta2O5 as a grain growth inhibitor has been tested on the microstructure of elaborated ceramics. The transmittance and luminescence properties, before and after irradiation, of the most promising materials were measured and correlated with their structural characteristics.
199

SMALL-SCALE MECHANICAL BEHAVIORS OF ZIRCONIA PROCESSED BY DIFFERENT TECHNIQUES

Jaehun Cho (9167816) 29 July 2020 (has links)
<p><a>Zirconium oxide (zirconia, ZrO<sub>2</sub>) is one of the essential structural ceramics for industrial applications due to its superb strength and fracture toughness. ZrO<sub>2</sub> has three main polymorphs: cubic, tetragonal, and monoclinic phase, depending on temperature, type, and concentration of dopants. Stabilized zirconia with metastable tetragonal phase can transform into monoclinic phase with ~ 4% volume expansion under an applied external stress. The tetragonal-to-monoclinic transformation can hinder crack propagations by generating a compressive stress field near crack field, thereby enhancing fracture toughness. In addition, other deformation mechanisms such as dislocation activities, crack deflection, and ferroelastic domain switching can further enhance its deformability. Bulk ZrO<sub>2</sub> is typically prepared by sintering at high temperatures over a long period of time. Recently, field-assisted sintering techniques such as flash sintering and spark plasma sintering have been applied to effectively sinter ZrO<sub>2</sub>. These techniques can significantly decrease sintering temperature and time, and more importantly introduce a large number of defects in the sintered fine grains.</a></p> <p>The miniaturization of sample dimension can alter the mechanical properties of materials by increasing the surface-to-volume ratio and decreasing the likelihood of retaining process-induced flaws. The knowledge of mechanical properties of ZrO<sub>2</sub> at micro and nanoscale is critical in that superelasticity and shape memory effect of ZrO<sub>2</sub> can be utilized for applications of actuation, energy-damping, and energy-harvesting at small scale. Here, we performed <i>in-situ</i> microcompression tests at various temperatures inside a scanning electron microscope to examine and compare the mechanical properties of ZrO<sub>2</sub> prepared by flash sintering, spark plasma sintering, plasma spray, and thermal spray. Detailed microstructural analyses were conducted by transmission electron microscopy. The unique microstructures in ZrO<sub>2</sub> prepared by field-assisted sintering largely improved their plasticity. Temperature and processing technique-dependent underlying deformation mechanisms and fracture behavior of ZrO<sub>2</sub> are discussed.</p>
200

Production of Fe-TiB2composite using liquidphase sintering

Reuterdahl, Otto January 2013 (has links)
This thesis work focus on evaluating the metallurgical bonding between the TiB2 andiron grains in the Fe-TiB2 composite. The starting materials were commercial materialsin form of Ferro-boron and Ferro-titanium that together with pure TiB2 powder formeda material with the composition seen below:FeB + FeTi + TiB2  52.3TiB2 + 45.7Fe + 2TiDuring sintering an iron liquid phase is formed where the boron from the FeB diffuse tothe titanium in FeTi which enables the formation of TiB2. The temperature used in theliquid phase sintering was chosen just above the three phase region, Fe-TiB2-liquid inthe phase diagram, to get an adequate densification of the samples. However, thetemperature could not be too high because of the internal stress and deformation thesamples would have been exposed to.After sintering the material properties and microstructure were examined throughPalmqvist indentations, Fargo and Transverse-Rupture-Strength tests and SEM studiesincluding EBSD.Through these tests the hardness was measured to 1323 HV and the microstructureconsidered to be fine with well distributed phases. The EBSD also showed that thebrittle Fe2B phase is present close to the TiB2 grains and that the porosity givesunreliable results for the Fargo and TRS-tests. The composite was impregnated withcopper to show that it may be possible to achieve wetting of the TiB2 phase by castingand to perform new tests on the material with less porosity.

Page generated in 0.0865 seconds