• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 11
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 22
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Regulation of AMPA receptor acetylation and translation by SIRT2 and AMPK: the molecular mechanisms and implications in memory formation

Wang, Guan 07 December 2016 (has links)
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated glutamatergic ion channels that mediate most excitatory neurotransmission in the brain. Alterations in AMPAR synaptic accumulation mediate synaptic plasticity, including long-term potentiation, long-term depression and homeostatic synaptic plasticity. AMPAR abundance in neurons is determined by balanced processes of protein translation and degradation. Changes in AMPAR function and trafficking have direct impacts on synaptic transmission and cognitive functions. However, the molecular mechanisms regulating AMPAR expression and dynamics in neurons remain largely unknown. In this thesis, two molecular mechanisms that regulate AMPAR translation and protein stability through two different signaling pathways, 5' adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 2 (SIRT2), are described. It is shown that SIRT2, a NAD+-dependent protein deacetylase, directly controls AMPAR stability by regulating AMPAR acetylation. For the first time, we discovered that AMPARs are subject to lysine acetylation, a novel form of post-translational modification for glutamate receptors. Under basal conditions, AMPARs are highly acetylated at their intracellular C termini, which protects against ubiquitination to antagonize AMPAR endocytosis and degradation, leading to prolonged receptor half-life. SIRT2 is also identified as the enzyme responsible for AMPAR deacetylation. Knockdown of SIRT2 led to elevated AMPAR acetylation and reduced ubiquitination, and consequently, increased AMPAR levels and synaptic transmission. SIRT2 knockout mice displayed weakened synaptic plasticity and impaired learning and memory. Resveratrol is a phytoalexin that has been shown to increase AMPAR expression and synaptic accumulation in neurons. The resveratrol effect on AMPAR expression is independent of sirtuin 1, the conventional target of resveratrol, but rather is mediated by AMPK and its downstream phosphoinositide 3-kinase (PI3K)/Akt pathway. Application of the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), to neurons mimics the effects of resveratrol on both signaling and AMPAR expression. The resveratrol-induced increase in AMPAR expression results from elevated protein synthesis through the AMPK-PI3K pathway activation. These studies describe novel regulatory mechanisms responsible for the control of AMPAR protein amount and subcellular distribution in neurons, providing insights into our understanding of synaptic plasticity, brain function and neurological disorders. / 2017-12-06T00:00:00Z
22

Fonctions métaboliques de Sirtuine 1 dans le muscle strié squelettique : contribution à l'étude de la régulation de l'expression de SREBP-1c et rôle potentiel lors d'un jeûne chez des myotubes C2C12 / Metabolic functions of sirtuin 1 in skeletal muscle : contribution to the study of regulation of the SREBP-1c expression and potential role during fasting in C2C12 myotubes

Defour, Aurélia 15 October 2010 (has links)
Sirt1 (Sirtuine 1) est une protéine histone déacétylase dépendante de NAD+ qui stimule la néoglucogénèse et inhibe la glycolyse dans le foie, et qui augmente l’oxydation des acides gras dans le muscle strié squelettique. Le but de ce travail de thèse a été de définir les fonctions métaboliques de Sirt1 dans le muscle strié squelettique. Nous avons tout d’abord montré, à l’aide d’un modèle de souris déficientes pour le gène Sirt1, que Sirt1 régulait l’expression de l’hexokinase II et de SREBP-1c, protéine régulatrice de l’expression de l’hexokinase. De plus, un modèle d’électrotransfert de gènes permettait de mettre en évidence que Sirt1 régulait l’expression de SREBP-1c de façon LXR dépendante. Enfin, l’inhibition de Sirt1 par l’EX527 aboutissait à une diminution de la consommation de glucose chez des myotubes C2C12. Prises ensemble, ces données suggèrent un rôle important de Sirt1 dans la régulation du métabolisme du glucose dans le muscle strié squelettique. Dans un second temps, nous avons déterminé le rôle potentiel de Sirt1 lors d’un jeûne chez des myotubes C2C12. Un jeûne entraînait une augmentation de l’activité cathepsine B + L et une déphosphorylation des protéines AktS473, GSK3S21/S9, p70S6KT412 et S6 S235/S236 qui précédait une amyotrophie des myotubes. La renutrition aboutissait à une rephosphorylation de ces protéines et à un retour à la normale de la taille des myotubes. L’activité cathepsine B + L restait cependant élevée. Enfin, le niveau en ARNm de Sirt1 était augmenté de façon transitoire lors de la renutrition. D’autres mesures de marqueurs des voies protéolytiques et de l’activité de Sirt1 sont à envisager. Nos données ainsi que celles de la littérature suggèrent que Sirt1 pourrait avoir un rôle dans la régulation de l’autophagie lors du jeûne. Pour conclure, ce travail de thèse met en évidence un rôle pour Sirt1 dans la régulation du métabolisme du glucose dans le muscle strié squelettique et apporte de nouvelles perspectives dans l’étude de la régulation de ce métabolisme en conditions pathologiques / Sirt1 (Sirtuin 1) is a NAD+-dependent histone deacetylase, which stimulates gluconeogenesis and inhibits glycolysis in the liver, and which increases fatty acid oxidation in skeletal muscle. The aim of this thesis was to define the metabolic functions of Sirt1 in skeletal muscle. We first showed, using a mouse model lacking the Sirt1 gene, that Sirt1 regulated expression of hexokinase II and SREBP-1c, a protein that regulates hexokinase expression. In addition, a model of gene electrotransfer allowed us to show that Sirt1 regulated expression of SREBP-1c in a LXR-dependent manner. Finally, inhibition of Sirt1 by EX527 resulted in a decrease of glucose consumption in C2C12 myotubes. Taken together, these data suggest an important role of Sirt1 in the regulation of glucose metabolism in skeletal muscle. Secondly, we determined the potential role of Sirt1 during fasting in C2C12 myotubes. Fasting resulted in an increase in cathepsin B + L activity and a dephosphorylation of AktS473, GSK3S21/S9, p70S6KT412 and S6 S235/S236 preceding a myotubes atrophy. Refeeding led to a rephosphorylation of these proteins and a return to normal size of myotubes. However, cathepsin B + L activity remained elevated. Finally, the level of Sirt1 mRNA was transiently increased during refeeding. Other measures of proteolytic pathways and Sirt1 activity markers will be determined. Our data and those of the literature suggest that Sirt1 could play a role in autophagyregulation during fasting. To conclude, this thesis highlights a role for Sirt1 in the regulation of glucose metabolism in skeletal muscle and provides new perspectives in the study of regulation of this metabolism in pathological conditions
23

Oxidative stress genes and gender-specific analysis of lifespan, blood pressure, and incident stroke in the Iowa 65+ cohort

TenNapel, Mindi Joy 01 December 2015 (has links)
Reactive oxygen species are formed internally through cellular metabolism and through external sources including radiation and pollutants. They play an important role in physiologic functions; however, when reactive oxygen species exceed our body’s antioxidant defense system, oxidative stress can occur. Oxidative stress has been implicated in aging and aging-related diseases including cancer and cardiovascular disease. Numerous oxidative stress genes produce antioxidative enzymes to mitigate the effects of reactive oxygen species. Single nucleotide polymorphisms within these genes may impact the functionality of antioxidant enzymes produced leaving the body more susceptible to damage from oxidative stress. The Iowa 65+ Rural Health Study was one of the four study populations in the Established Population for Epidemiologic Studies of the Elderly (EPESE) project initiated by the intramural Epidemiology, Demography and Biometry Program of the National Institute on Aging in 1980. The Iowa cohort was comprised of Iowa county and Washington county residents aged 65 and older at the time of the baseline interview in 1982. Participants completed three in-person interviews and five telephone interviews over eight years which collected data on habits, lifestyle and disease. During the in-person Year 06 interview participants were asked to donate a blood sample. The DNA extracted from the samples was used in each of the three aims of this project. The first aim evaluated single nucleotide polymorphisms in selected oxidative stress genes and their association with lifespan while controlling for aging-associated risk factors such as body mass index, comorbidity, alcohol consumption, smoking, and physical activity. Multivariable linear regression models were fit in the framework of the co-dominant genetic model. The oxidative stress genes selected for this project included the sirtuin family of genes (SIRT1-7), two of the forkhead box genes (FOXO1 and FOXO3), superoxide dismutase 2 and 3 (SOD2 and SOD3), glutathione peroxidase (GPX1), AKT, TP53, and CAMK4. A model was fitted with the risk factors before assessing the impact of each single nucleotide polymorphism. The q-value was used to control for the multiple hypothesis tests. Significant associations were detected between human lifespan and SNPs in genes SIRT3, SIRT5, SIRT6, FOXO3, and SOD3; gender modified the effect of SNPs in SIRT3, SIRT5, and AKT1. The second aim of this project evaluated single nucleotide polymorphisms in selected oxidative stress genes and their association with blood pressure measures while controlling for known risk factors including body mass index, alcohol consumption, smoking, and physical activity. Blood pressure was measured at the baseline and Year 06 interviews. Systolic pressure and diastolic pressure were used to calculate mean arterial pressure and pulse pressure at baseline and Year 06. Multivariable linear regression was used within the co-dominant genetic framework to determine if single nucleotide polymorphisms in SIRT1-7, FOXO1, FOXO3, SOD2-3, GPX1, AKT, TP53, and CAMK4 were associated with systolic, diastolic, mean arterial, or pulse pressure at baseline or Year 06. To examine longitudinal effects, the difference between each measure (i.e., Year 06 systolic – baseline systolic) was calculated for each individual and used to evaluate if any of the single polymorphisms was associated with change in blood pressure measures over time. Significant associations were detected between SIRT1 and SIRT3 and for males in SIRT1 and various blood pressure measures for females. Gender modified the effect of SIRT1, SIRT3, SIRT6, and FOXO1 variants. The third aim of this project evaluated if these genetic variants were associated with incident stroke while controlling for known risk factors including blood pressure, diabetes, body mass index, alcohol consumption, smoking, and physical activity. Multivariable logistic regression within the framework of the co-dominant genetic model was used. Individuals with the GPX1 genotype TT had 2.76 times the risk of an incident stroke compared to the CC genotype. This project identified several associations between single nucleotide polymorphisms within oxidative stress genes and lifespan, blood pressure measures, and incident stroke. Gender modified the association of several single nucleotide polymorphisms and lifespan as well as blood pressure measures. These results suggest genetic variation within oxidative stress genes may play a role in aging, blood pressure and incident stroke.
24

Investigating the Role of Sirtuin 1 in the Pulmonary Vascular Response to Chronic Hypoxia-Induced Pulmonary Hypertension

Taha, Mohamad 25 April 2018 (has links)
Background: Pulmonary arterial hypertension (PAH) is a devastating disease characterized by increased pulmonary artery pressure, leading to right ventricle hypertrophy and ultimately heart failure and death. Sirtuin 1 (SIRT1) is an NAD+ dependent protein deacetylase that has been strongly implicated as a crucial link between longevity, stress response and maintenance of vascular health. In this thesis, we investigated the role of SIRT1 in the pulmonary vascular hypoxic response and the pathogenesis of pulmonary hypertension (PH) working under the hypothesis that SIRT1 plays a protective role in the pulmonary vasculature and that lack of SIRT1 would lead to worsening of PH in a model of chronic hypoxia (CH). Results: We determined that global SIRT1 knockout or SIRT1 catalytic inactivation resulted in a marked increase in right ventricle pressure and remodeling compared to wildtype mice in CH. Furthermore, hypoxia-induced erythrocytosis and pulmonary vascular remodeling were profoundly increased in both SIRT1 mouse lines. Subsequent molecular assessment revealed that SIRT1 knockout, but not inactivation, led to a significant increase in mRNA levels of hypoxia inducible factor (HIF)-1α and significantly higher activity in hypoxia, leading to elevated lactate dehydrogenase A (LDHA) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) in the lungs. Interestingly, both knockout and inactivation of SIRT1 enhanced the activity of HIF2α in the hypoxic lungs and kidneys, leading to increased erythropoietin (EPO) and plasminogen activator inhibitor-1 (PAI-1). Moreover, SIRT1 knockout or inactivation was associated with a trend towards hypoxic-independent increases in HIF3α mRNA in the lungs. Prevention of glycolytic shift using dichloroacetate (DCA) did not result in improvement in this model, yet resveratrol (RSV), a SIRT1 activator/mimic, partially prevented PH only in absence of SIRT1 activity. Finally, selective endothelial cell SIRT1 deletion was sufficient to cause worse PH in the CH model. Conclusions: SIRT1 plays a protective role in the hypoxic response through transcriptional and non-transcriptional control of the hypoxia inducible factors, thus protecting against worse hypoxia-induced PH. SIRT1 could be a novel target for future therapies in PAH.
25

The role of vascular smooth muscle Sirtuin-1 in aortic aneurysms

Sulser Ponce de Leon, Sandra 14 March 2022 (has links)
BACKGROUND: Sirtuin-1 (SirT1) is a NAD+-dependent deacetylase essential for maintaining the structure and function of the vasculature. Reduced SirT1 expression and activity has been correlated with the development of vascular diseases, mainly attributed to loss of SirT1’s anti-oxidant and anti-inflammatory beneficial effects. We previously found that deletion of vascular smooth muscle (VSM) SirT1 in mice is associated with increased matrix metalloproteinases (MMPs) and the subsequent development of aortic dissections or ruptures in response to the hypertensive peptide angiotensin II. Based on these previous findings, we hypothesize that loss of SirT1 activity is involved in the pathogenesis of AA. SirT1 is a stress response gene, its deacetylase activity can be impaired by excessive oxidative stress. We postulate that mutating three cysteine residues in SirT1’s catalytic domain can prevent its inactivation by oxidative insults and protect against AA and other vascular diseases. OBJECTIVES: assess the role of SirT1 in a genetic mouse model of Marfan Syndrome that develops AA; (2) Determine design and optimize an enzyme-based colorimetric ELISA to determine SirT1 activity in mouse VSM cells and aortas; (3) Produce an adeno-associated virus (AAV) expressing an oxidant-resistant triple mutant SirT1 in VSM cells that has the potential to mitigate the downstream outcomes derived from alterations in SirT1 activity, such as MMPs activation and development of AA in mgR-/- mice. METHODS: mgR-/- and littermate mgR+/+ (WT) mice aortas and VSM cells were cultured in conditioned medium and the activity of released MMPs was determined by in-gel zymography. For the development of the SirT1 activity assay, we designed a multi-step sandwich ELISA that captures a biotin- and FLAG-tagged acetylated p53 peptide, used as SirT1 deacetylase substrate. Amounts of acetylated and total p53 peptide were sequentially detected with antibodies and colorimetric substrates as index of SirT1 deacetylase activity. AAVs expressing a control or triple mutant SirT1 (3M) were produced in HEK293T cells; VSM cells were then infected with control or 3M AAV and SirT1 protein expression levels were measured by Western Blot. RESULTS: MMPs activity is increased in aortas and VSMC of mgR-/- mice; the first stage of optimization of the SirT1 activity assay successfully defined the assay conditions and experimental design, and it is ready to be optimized with mgR-/- cell and tissue samples; our novel control and SirT1 triple mutant AAVs were produced and successfully overexpressed in VSM cells. / 2024-03-14T00:00:00Z
26

Protection of CD4<sup>+</sup> T Cells From Hepatitis C Virus Infection-Associated Senescence via ∆Np63-miR-181a-Sirt1 Pathway

Zhou, Yun, Li, Guang Y., Ren, Jun P., Wang, Ling, Zhao, Juan, Ning, Shun B., Zhang, Ying, Lian, Jian Q., Huang, Chang X., Jia, Zhan S., Moorman, Jonathan P., Yao, Zhi Q. 01 November 2016 (has links)
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age-and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ∆Np63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ∆Np63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated b-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ∆Np63-miR-181a-Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3- effector T (Teff) cells upon manipulating the ∆Np63-miR-181a-Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
27

The Mechanotransduction of Hydrostatic Pressure by Mesenchymal Stem Cells

Hosseini, Seyedeh Ghazaleh 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mesenchymal stem cells (MSCs) are responsive to mechanical stimuli that play an essential role in directing their differentiation to the chondrogenic lineage. A better understanding of the mechanisms that allow MSCs to respond to mechanical stimuli is important to improving cartilage tissue engineering and regenerative medicine. Hydrostatic pressure (HP) in particular is known to be a primary mechanical force in joints. However, little is known about the underlying mechanisms that facilitate HP mechanotransduction. Understanding the signaling pathways in MSCs in transducing HP to a beneficial biologic response and their interrelationship were the focus of this thesis. Studies used porcine marrow-derived MSCs seeded in agarose gel. Calcium ion Ca++ signaling, focal adhesion kinase (FAK) involvement, and sirtuin1 activity were investigated in conjunction with HP application. Intracellular Ca++ concentration was previously shown to be changed with HP application. In our study a bioreactor was used to apply a single application of HP to the MSC-seeded gel structures and observe Ca++ signaling via live imaging of a fluorescent calcium indicator in cells. However, no fluctuations in Ca++ concentrations were observed with 10 minutes loading of HP. Additionally a problem with the biore actor design was discovered. First the gel was floating around in the bioreactor even without loading. After stabilizing the gel and stopping it from floating, there were still about 16 µm of movement and deformation in the system. The movement and deformation was analyzed for the gel structure and different parts of the bioreactor. Furthermore, we investigated the role of FAK in early and late chondrogenesis and also its involvement in HP mechanotransduction. A FAK inhibitor was used on MSCs from day 1 to 21 and showed a dose-dependent suppression of chondrogenesis. However, when low doses of FAK inhibitor added to the MSC culture from day 21 to 42, chondrogenesis was not inhibited. With 4 hour cyclic HP, FAK phosphorylation increased. The beneficial effect of HP was suppressed with overnight addition of the FAK inhibitor to MSC medium, suggesting FAK involvement in HP mechanotransd ucation by MSCs. Moreover, sirtuin1 participation in MSC chondrogenesis and mechanotransduc tion was also explored. The results indicated that overnight sirtuin1 inhibition in creased chondrogenic gene expression (Agc, Col2, and Sox9) in MSCs. Additionally, the activity of sirtuin1 was decreased with both 4 hour cyclic hydrostatic pressure and inhibitor application. These two together demonstrated that sirtuin1 inhibition enhances chondrogenesis. In this research we have investigated the role of Ca++ signaling, FAK involvement, and sirtuin1 activity in the mechanotransduction of HP in MSCs. These understand ings about the mechanisms regulating the chondrogenesis with respect to HP could have important implications for cartilage tissue engineering and regenerative studies.
28

Defective Dynamics Of Mitochondria In Amyotrophic Lateral Sclerosis And Huntington's Disease

Song, Wenjun 01 January 2012 (has links)
Mitochondria play important roles in neuronal function and survival, including ATP production, Ca2+ buffering, and apoptosis. Mitochondrial dysfunction is a common event in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD); however, what causes the mitochondrial dysfunction remains unclear. Mitochondrial fission is mediated by dynamin-related protein 1 (DRP1) and fusion by mitofusin 1/2 (MFN1/2) and optic atrophy 1 (OPA1), which are essential for mitochondrial function. Mutations in the mitochondrial fission and fusion machinery lead to neurodegeneration. Thus, whether defective mitochondrial dynamics participates in ALS and HD requires further investigation. ALS is a fatal neurodegenerative disease characterized by upper and lower motor neuron loss. Mutations in Cu/Zn superoxide dismutase (SOD1) cause the most common familiar form of ALS by mechanisms not fully understood. Here, a new motor neuron-astrocyte coculture system was created and live-cell imaging was used to evaluate mitochondrial dynamics. Excessive mitochondrial fission was observed in mutant SOD1G93A motor neurons, correlating with impaired axonal transport and neuronal cell death. Inhibition of mitochondrial fission restored mitochondrial dynamics and protected neurons against SOD1G93A -induced mitochondrial fragmentation and neuronal cell death, implicating defects in mitochondrial dynamics in ALS pathogenesis. iv HD is an inherited neurodegenerative disorder caused by glutamine (Q) expansion in the polyQ region of the huntingtin (HTT) protein. In the current work, mutant HTT caused mitochondrial fragmentation in a polyQ-dependent manner in both primary cortical neurons and fibroblasts from human patients. An abnormal interaction between DRP1 and HTT was observed in mutant HTT mice and inhibition of mitochondrial fission or promotion of mitochondrial fusion restored mitochondrial dynamics and protected neurons against mutant HTT-induced cell death. Thus, mutant HTT may increase mitochondrial fission by elevating DRP1 GTPase activity, suggesting that mitochondrial dynamics plays a causal role in HD. In summary, rebalanced mitochondrial fission and fusion rescues neuronal cell death in ALS and HD, suggesting that mitochondrial dynamics could be the molecular mechanism underlying these diseases. Furthermore, DRP1 might be a therapeutic target to delay or prevent neurodegeneration.
29

Novel approaches to activate Sirtuin-1

McElhinney, Priscilla 01 March 2024 (has links)
Sirtuin-1 (SirT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylase expressed ubiquitously in the body. In the vasculature, SirT1 is present in endothelial and vascular smooth muscle cells (VSMCs), where it has been shown to promote anti-inflammatory and anti-oxidant effects. As a result, SirT1 is known to play a protective role in the vasculature wall from pathologies such as atherosclerosis, arterial stiffness, and aortic aneurysm. Hence, SirT1 is considered an attractive therapeutic target for vascular diseases and potentially, aging-related and metabolic diseases. However, currently available SirT1 activators have failed to reach the clinic. Thus, novel approaches to activate SirT1 are needed. In this study, we first sought to optimize a novel fluorescence-based SirT1 activity assay, with which to reliably assess intracellular SirT1 activity and the efficacy of SirT1 activators and inhibitors. We next sought to use the SirT1 activity assay to screen novel compounds identified by an in silico docking analysis and hypothesized to activate SirT1. Lastly, we generated adeno-associated viruses (AAV) overexpressing wildtype (WT) or a redox-resistant (3M) SirT1 to analyze the effects of overexpressing SirT1 in VSMCs, in normal and oxidative stress conditions. For the activity assay, our results showed that an optimal standard curve range was between 0 ng and 12 ng of substrate (acetylated-p53 peptide). After testing different commercially available human recombinant SirT1s, the Anaspec SirT1 of the highest concentration showed a decrease in measured fluorescence for acetylated-p53 peptide with higher SirT1 (ng), indicating the enzyme and the assay were functional. However, when novel small molecules (A4, B4, and G3) hypothesized to activate SirT1 were added to reactions, the total p53 peptide fluorescence values increased compared to the control, suggesting some interference of the molecules with the assay detection. After AAV infection in VSMCs, SirT1 expression, measured by HA-tag, increased for AAV WT (n=3, p=0.04) and similarly for AAV 3M SirT1, indicating that the AAVs efficiently infect VSMCs. SirT1 activity, measured by Western Blot as decreased acetylated-histone (H3), also appeared to increase for both AAV WT and AAV 3M. A similar trend was shown for VSMCs under oxidant stress conditions (n=2). In conclusion, we successfully established a standard curve range for a novel SirT1 activity assay. Further trials are needed to ensure activity assay reproducibility before testing the efficacy of SirT1 activators and inhibitors. Infection of AAV WT and 3M SirT1 led to an increase in the expression and activity of SirT1 in VSMCs. The expression of SirT1 by AAV may be a promising therapeutic option for in vivo prevention and treatment of vascular diseases. / 2026-03-01T00:00:00Z
30

白藜蘆醇衍生物SRT1720在百草枯誘發帕金森氏症實驗模式的神經保護機制:針對粒線體功能之研究 / Investigating the protective mechanism of SRT1720 in mediating paraquat-induced Parkinson's disease model : focusing on mitochondrial function

許庭凰, Hsu, Ting-Huang Unknown Date (has links)
帕金森氏症 (Parkinson’s disease,PD) 為目前最普遍的神經退化性疾病之一,該病因主要是由於中腦黑質區的多巴胺細胞的死亡造成運動系統的失能。環境常用農藥百草枯 (Paraquat,PQ) 目前已知是導致帕金森氏症的環境因子之一。它主要作用在粒線體上,阻斷粒線體的功能、造成大量氧化自由基生成、並誘導細胞凋亡的發生。沉默調節因子蛋白Sirtuin家族 (Sirtuin Family,Sirt1-Sirt7) 是一群 Nicotinamide adenine dinucleotide (NAD+) 依賴性去乙醯化酶,具有抗老化、以及預防神經退化性疾病等能力。SRT1720是根據天然植物酚類白藜蘆醇製造出來的化學衍生物,具有活化Sirtuin的能力。先前研究也顯示SRT1720具有增加糖尿病小鼠的存活率、抗腫瘤、抗發炎等功能,但SRT1720對於神經退化性疾病的保護性並不清楚。為了解SRT1720是否具有對抗PQ的細胞毒性,用以評估SRT1720是否具有治療帕金森氏症的潛力,本研究使用人類神經瘤母細胞株 (SH-SY5Y) 作為帕金森氏症的離體外實驗模式,來探討SRT1720及PQ對於細胞的作用及影響。實驗結果顯示,PQ造成細胞存活率呈劑量反應地下降,而SRT1720可以回復因PQ所造成細胞存活率的下降、細胞凋亡的產生、粒線體的型態變化,以及降低氧化自由基的生成等。這證明SRT1720對細胞具有神經保護的效果。本研究也利用西方點墨法證實了當細胞暴露在PQ下,SRT1720會回復因PQ所導致Sirt1-Sirt7蛋白含量的下降。其中,大量表現Sirt1可以對抗PQ造成細胞的死亡。本研究也發現SRT1720可回復PQ自噬小體在細胞中的堆積情形,利用西方點墨法觀察SRT1720可以回復LC3-I/II的蛋白質再細胞間的堆積。此外,在對於20週大的C57BL/6小鼠注射PQ (10 mg/kg) 及SRT1720 (0.1mg/kg或1 mg/kg),並利用滾輪及獨木橋試驗觀察其運動行為。結果顯示,SRT1720可以回復PQ所造成運動能力上的下降,並且減緩PQ所造成中腦區多巴胺神經元的傷害。綜觀以上結果,在細胞暴露在PQ時,SRT1720或許可以經由保護粒線體功能,使ROS生成量達到回復及降低細胞凋亡的發生。同時SRT1720也能保持自噬作用的平衡,降低自噬小體在細胞中的堆積。這些機轉也許與SRT1720可以保護多巴胺神經元有關。另一方面,由於Peroxisomal proliferator-activated receptor-coactivator 1α (PGC-1α) 與粒線體的生合成與神經保護有關,本實驗也發現SRT1720可改變PGC-1α去乙醯化的程度,但SRT1720對於Sirtuin蛋白以及Sirt1下游PGC-1α的活化與否還需做進一步的調查及研究。此研究顯示SRT1720對於保護細胞免於受到PQ所引發氧化壓力以及粒線體損傷之神經退化模型提供了一個具有潛力的治療方法。 / Parkinson’s disease (PD) is one of the most common neurodegenerative disorder and mainly affecting the motor system because of the dopamine neuronal death in the substantia nigra. The exposure to environmental neurotoxin paraquat (PQ) is a widely used herbicide. It induces the increase of ROS stress, leads to mitochondrial dysfunction, and results in apoptotic cell death. Epidemiologically, it could be the risk for PD incidence. Mammalian silent information regulator 2 Sirtuin Family (Sirt1-Sirt7) is a NAD+ dependent deacetylase enzyme and it protects against such as anti-aging and neurodegenerative disease. SRT1720 which derives from resveratrol is able to activate Sirt1. SRT1720 has been reported to improve survival in obese mice, anti-tumor, and anti-inflammatory, but the effect in the neurodegenerative disease it still unknown. We thus proposed if SRT1720 could have neuron- protective effect in PQ-induced toxicity. We used SH-SY5Y cell to evaluate the effect of SRT1720 and PQ. First, we confirmed that PQ could dose- and time-dependently decrease SH-SY5Y cell viability, increase ROS formation, and induce mitochondrial dysfunction. However, SRT1720 pretreatment improved cell viability, decreased apoptosis and ROS formation, and prevented mitochondrial dysfunction in PQ-treated SH-SY5Y cells. By Western blot analysis, SRT1720 pretreatment could preserve Sirt1-Sirt7 protein contents during PQ intoxication. In autophagy studies, we also found that SRT1720 could reduce PQ-induce autophagic vacuoles accumulation. Furthermore, we also found that intraperitoneally injection of 10 mg/kg PQ once a week in mice can decrease the level of motor activity after 6 weeks treatment. However, SRT1720 (0.1 mg/kg or 1mg/kg) treatment, reversed PQ- induced motor defect. Taken together, SRT1720 could protect mitochondrial function and improve cell survival during PQ intoxication. This work provided a promising therapeutic way for treating aging-related neurodegenerations, such as PD.

Page generated in 0.0373 seconds