• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure and Dynamics of AcrA, a Periplasmic Component of a Multidrug Efflux Pump

Ip, Hermia 18 February 2010 (has links)
AcrA is the periplasmic component of an efflux system AcrA-AcrB-TolC, which can expel different classes of antibiotics. AcrB is the inner membrane (IM) pump that utilizes proton-motive force for the active transport, TolC is the outer membrane (OM) channel, and AcrA coordinates the actions of AcrB and TolC, so that substrates are expelled across the two membranes, bypassing the periplasm. It has been proposed that AcrA either provides a static seamless link between AcrB and TolC, or acts like its analogous viral membrane fusion protein (MFP) and actively brings the IM and OM closer for substrate transfer. To better understand the role of AcrA in the efflux mechanism, site-directed spin labeling (SDSL)/EPR (electron paramagnetic resonance) spectroscopy is used to investigate the structure and dynamics of AcrA in solution. My results demonstrated that AcrA is a dynamic protein that undergoes pH-dependent and reversible conformational changes. AcrA contains an interrupted alpha-helical, coiled-coil domain flanked by a pair of beta-stranded lipoyl motifs, and my SDSL/EPR analysis revealed that the pH-induced conformation change mainly involves the coiled-coil and the lipoyl domains. In addition, I found that each AcrA monomer folds into an intra-molecular hairpin and AcrA monomers oligomerize with their coiled-coil hairpins aligned in parallel. Unlike the pH-induced conformational rearrangement of a viral MFP, change in pH alters both intra- and inter-molecular interaction along the coiled-coil of AcrA without rearranging the hairpin fold. The organization of AcrA protomers and its pH-induced conformational switching are, however, congruent with the TolC coiled-coil hairpins in the iris-like opening of the TolC channel. Together, my studies suggest that rather than being a passive structural linkage between AcrB and TolC, AcrA plays an active role mediating the drug efflux. The reported AcrA dynamics provides new insights into the AcrA-TolC interactions for the channel opening during the efflux process.
2

Structure and Dynamics of AcrA, a Periplasmic Component of a Multidrug Efflux Pump

Ip, Hermia 18 February 2010 (has links)
AcrA is the periplasmic component of an efflux system AcrA-AcrB-TolC, which can expel different classes of antibiotics. AcrB is the inner membrane (IM) pump that utilizes proton-motive force for the active transport, TolC is the outer membrane (OM) channel, and AcrA coordinates the actions of AcrB and TolC, so that substrates are expelled across the two membranes, bypassing the periplasm. It has been proposed that AcrA either provides a static seamless link between AcrB and TolC, or acts like its analogous viral membrane fusion protein (MFP) and actively brings the IM and OM closer for substrate transfer. To better understand the role of AcrA in the efflux mechanism, site-directed spin labeling (SDSL)/EPR (electron paramagnetic resonance) spectroscopy is used to investigate the structure and dynamics of AcrA in solution. My results demonstrated that AcrA is a dynamic protein that undergoes pH-dependent and reversible conformational changes. AcrA contains an interrupted alpha-helical, coiled-coil domain flanked by a pair of beta-stranded lipoyl motifs, and my SDSL/EPR analysis revealed that the pH-induced conformation change mainly involves the coiled-coil and the lipoyl domains. In addition, I found that each AcrA monomer folds into an intra-molecular hairpin and AcrA monomers oligomerize with their coiled-coil hairpins aligned in parallel. Unlike the pH-induced conformational rearrangement of a viral MFP, change in pH alters both intra- and inter-molecular interaction along the coiled-coil of AcrA without rearranging the hairpin fold. The organization of AcrA protomers and its pH-induced conformational switching are, however, congruent with the TolC coiled-coil hairpins in the iris-like opening of the TolC channel. Together, my studies suggest that rather than being a passive structural linkage between AcrB and TolC, AcrA plays an active role mediating the drug efflux. The reported AcrA dynamics provides new insights into the AcrA-TolC interactions for the channel opening during the efflux process.
3

Estudos da dinâmica estrutural da proteína ligante de cálcio S100A12 humana e da lisozima T4 / Structural dynamics studies of human calcium binding protein S100A12 and T4 lysozyme

Citadini, Ana Paula da Silva 28 April 2011 (has links)
O trabalho ora apresentado foi concebido como tendo dois objetivos. O primeiro, mais geral, foi implementar uma nova metodologia para o estudo de mudanças conformacionais em proteínas, ou seja, de sua dinâmica estrutural. A técnica de marcação de spin sítio dirigida aliada à ressonância paramagnética eletrônica (SDSL-RPE) são os pilares desse novo método que faz, agora, parte do conjunto de técnicas disponíveis no Grupo de Biofísica Molecular Sérgio Mascarenhas do Instituto de Física de São Carlos (USP). O segundo objetivo, mais específico, representou o caminho efetivamente tomado para que se alcançasse o objetivo geral. Para isso, foi proposto o estudo da correlação estrutura e função de dois sistemas biológicos muito interessantes. O primeiro deles envolveu o estudo do movimento das hélices que compõem a estrutura da proteína ligante de cálcio S100A12 humana (HS100A12) induzido pelos íons cálcio e zinco. Sabendo que a proteína S100A12 humana além de ligar íons Ca+2, apresenta afinidade por outros metais divalentes, como os íons Zn+2 e Cu+2, e que a formação de diferentes oligômeros da proteína é governada pela concentração dos íons Ca+2 e Zn+2, realizamos estudos espectroscópicos utilizando a técnica de dicroísmo circular a fim de investigarmos a estabilidade térmica da proteína HS100A12 na presença e ausência dos íons cálcio e zinco. Mudanças conformacionais na estrutura da HS100A12 foram monitoradas através da construção de uma série de mutantes (simples e duplos) em que resíduos nas hélices B, C e D foram trocados por cisteínas, subsequentemente marcadas com a sonda magnética MTSSL e submetidas às análises de SDSL-RPE. Estas consistiram na medida do espectro de RPE dos vários mutantes em temperatura ambiente para estudarmos os efeitos da presença dos íons sobre a dinâmica experimentada pela sonda nas diversas posições. Além disso, efetuamos medidas de distância entre duas sondas seletivamente inseridas na estrutura protéica, procurando assim complementar o entendimento acerca do efeito da presença dos íons sobre a proteína. Por fim, devido ao fato da proteína HS100A12 estar envolvida em alguns eventos de sinalização celular e interação com o receptor para produtos de glicosilação (RAGE), decidimos também, estudar a interação da proteína com modelos de biomembranas, utilizando monocamadas de Langmuir. O outro problema de interesse utilizou a lizosima do fago T4, uma proteína padrão, da qual uma variedade de mutantes é produzida rotineiramente a fim de obtermos mais detalhes a respeito da sua correlação estrutura e função e tornar mais sólido o entendimento da técnica SDSL. Inicialmente, realizamos um estudo com a suposta criação de uma cavidade no \"core\" hidrofóbico da porção C-terminal da enzima, quando mutamos a Leu 133 por Ala e/ou Gly, ou seja, quando trocamos um resíduo grande por um de menor volume, pois se acredita que a proteína sofra um reajuste estrutural com o intuito de preencher o espaço vazio criado por essa substituição. Para isso, propusemos estudar por SDSL o movimento da α-hélice H inserindo o marcador de spin na posição vizinha ao resíduo mutado. Adicionalmente, realizamos um experimento de \"transmutação\" com a enzima T4L, a fim de investigar a natureza das contribuições para os diferentes modos dinâmicos experimentados pelo marcador de spin quando introduzido em sítios topologicamente semelhantes. / The work presented here was conceived with two main objectives. The first one, more general, involved the implementation of a new methodology for the study of conformational changes in proteins, i.e., its structural dynamics. The technique of Site-directed Spin Labeling combined with Electronic Paramagnetic Resonance (SDSL-EPR) are the pillars of this new method, which is now part of the set of techniques available at the Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos (USP). The second objective, more specific, represented the path actually taken to achieve the overall goal. Therefore, it was proposed to study the structure-function correlation in two interesting biological systems. The first involved the study of the movement of the helices that form the structure of the human calcium binding protein S100A12 (HS100A12) induced by calcium and zinc ions. Knowing that, besides Ca+2, human S100A12 has also affinity for other divalent metals, such as Zn+2 and Cu+2 ions, and that the formation of different protein oligomers is governed by the concentration of Ca+2 and Zn+2, we performed spectroscopic studies using circular dichroism (CD) to investigate the thermal stability of protein HS100A12 in the presence and absence of calcium and zinc. Conformational changes in the structure of HS100A12 were monitored by producing a series of mutants (singles and doubles) in which residues in helices B, C and D were replaced by cysteine and subsequently labeled with a magnetic probe MTSSL and then analyzed via SDSL-EPR. The latter consisted of the EPR spectra measurement of many mutants at room temperature to study the effects of the presence of ions on the dynamics experienced by the probe in different positions. In addition, we performed measurements of the distance between two probes inserted in the protein structure, thereby, seeking to improve the understanding of the effect of the ions presence on the protein. Finally, due to the fact that HS100A12 is involved in some events of cell signaling and interaction with the Receptor for Advanced Glycation End Products (RAGE), we also decided to study the interaction of protein with models of biomembranes using Langmuir monolayers. In the other problem of interest, we used a variety of mutants of the enzyme T4 lysozyme, a protein standard, in order to obtain more details about its structure-function correlation and make more solid the understanding of SDSL technique. Initially, we conducted a study about the alleged creation of a cavity in the hydrophobic C-terminal portion of the enzyme, when we replaced the Leu 133 by Ala and/or Gly, or when we changed a large residue for a smaller one, because it is believed that the protein undergoes a structural adjustment in order to fill the gap created by this substitution. For this, we studied by SDSL the α-helix H motion, inserting the spin label in a neighbor position of the mutated residue. Additionally, we performed an experiment of \"transmutation\" with the enzyme T4L in order to investigate the nature of contributions for different dynamic modes experienced by the spin label when it is introduced in topologically similar sites.
4

Estudos estruturais e funcionais de diidroorotato desidrogenases / Structural and functional studies of dihydroorotate dehydrogenase

Carvalho, Sheila Gonçalves do Couto 28 March 2008 (has links)
As enzimas diidroorotato desidrogenases (DHODHs) são flavo-enzimas que catalisam a oxidação do diidroorotato em orotato na quarta etapa da biossíntese de novo de nucleotídeos de pirimidina. Durante a rápida proliferação celular em mamíferos, a via de salvação de pirimidinas é insuficiente para suprir deficiências na síntese de nucleotídeos. Além disso, certos parasitas não possuem a via de salvação e contam somente com a biossíntese de novo para a produção de nucleotídeos. Por esta razão, DHODH se tornou um excelente alvo na busca por inibidores que interrompam a síntese de nucleotídeos. As enzimas DHODHs de E. coli (EcDHODH) e de X. fastidiosa (XfDHODH) são membros da classe 2 das DHODHs e encontram-se associadas à membrana citoplasmática através de uma extensão em seu N-terminal, enquanto que DHODH de T. cruzi (TcDHODH), membro da classe 1 de DHODHs, é uma proteína citosólica. Neste trabalho, usamos uma combinação de metodologias de biologia molecular e bioquímica com técnicas espectroscópicas para obter informações estruturais e funcionais acerca da enzima DHODH. Assim, Ressonância Paramagnética Eletrônica (RPE) associada à marcação de spin sítio dirigida (SDSL) e simulação espectral foram empregadas para estudar a interação da EcDHODH com modelos de membrana. Mudanças na dinâmica estrutural das vesículas induzidas pela enzima foram monitoradas via marcadores de spin localizados em diferentes posições ao longo da cadeia acil de fosfolipídios. Além disso, técnicas de DNA recombinante e mutações sítio dirigidas foram utilizadas para produzir mutantes de EcDHODH no qual um sondas paramagnéticas foram seletivamente ligadas em resíduos localizados na extensão N-terminal da proteína para experimentos subseqüentes de RPE-SDSL. Esses são os primeiros experimentos de marcação de spin sítio dirigida realizados no Brasil e com os quais monitoramos a dinâmica experimentada na região do N-terminal. Além disso, várias tentativas foram feitas para se expressar e purificar a enzima XfDHODH e a estabilidade estrutural da enzima TcDHODH na presença de um de seus inibidores naturais, o orotato, foi monitorada através de experimentos de Dicroísmo Circular (CD). / Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes which catalyse the conversion of (S)-dihydroorotate to orotate, in the fourth step of the de novo biosynthesis of pyrimidine nucleotides. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies for nucleotide synthesis. Moreover certain parasites lack salvage enzymes, relying solely on the de novo pathway to produce nucleotides. Thus, DHODH has turned out an excellent target to the development of inhibitors that block nucleotide biosynthesis. E. coli DHODH (EcDHODH) and X. fastidiosa DHODH (XfDHODH) are class 2 DHODHs found associated to cytosolic membranes through an N-terminal extension, whereas T. cruzi DHODH (TcDHODH) is a class 1 DHODH localizated in the cytoplasm. In the present work, we used a combination of molecular biology and biochemical methodologies with spectroscopic techniques to obtain structural and functional information on DHODH. On one hand, Electronic Paramagnetic Resonance (EPR) associated with Site-directed Spin Labeling (SDSL) and spectral simulation were employed to study the interaction of EcDHODH with vesicles. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions along the phospholipid acyl chain and via spin labels located at enzyme specific positions. On the other hand, DNA techniques and site-directed mutagenesis were used to produce mutants of EcDHODH where a nitroxide spin probe was selectively attached to some residues located at the protein N-terminal extension for subsequent EPR-SDSL experiments. These are the first site-directed spin labeling experiments performed in Brazil and the spectra allowed us to monitor dynamics experienced by those residues at the EcDHODH N-terminal domain. Furthermore, molecular biology and biochemical assays were employed with the objective of expressing and purifying XfDHODH and Circular Dichroism (CD) was utilized to probe the structural stability of TcDHODH in the presence of its natural inhibitor (orotate).
5

Estudos estruturais e funcionais de diidroorotato desidrogenases / Structural and functional studies of dihydroorotate dehydrogenase

Sheila Gonçalves do Couto Carvalho 28 March 2008 (has links)
As enzimas diidroorotato desidrogenases (DHODHs) são flavo-enzimas que catalisam a oxidação do diidroorotato em orotato na quarta etapa da biossíntese de novo de nucleotídeos de pirimidina. Durante a rápida proliferação celular em mamíferos, a via de salvação de pirimidinas é insuficiente para suprir deficiências na síntese de nucleotídeos. Além disso, certos parasitas não possuem a via de salvação e contam somente com a biossíntese de novo para a produção de nucleotídeos. Por esta razão, DHODH se tornou um excelente alvo na busca por inibidores que interrompam a síntese de nucleotídeos. As enzimas DHODHs de E. coli (EcDHODH) e de X. fastidiosa (XfDHODH) são membros da classe 2 das DHODHs e encontram-se associadas à membrana citoplasmática através de uma extensão em seu N-terminal, enquanto que DHODH de T. cruzi (TcDHODH), membro da classe 1 de DHODHs, é uma proteína citosólica. Neste trabalho, usamos uma combinação de metodologias de biologia molecular e bioquímica com técnicas espectroscópicas para obter informações estruturais e funcionais acerca da enzima DHODH. Assim, Ressonância Paramagnética Eletrônica (RPE) associada à marcação de spin sítio dirigida (SDSL) e simulação espectral foram empregadas para estudar a interação da EcDHODH com modelos de membrana. Mudanças na dinâmica estrutural das vesículas induzidas pela enzima foram monitoradas via marcadores de spin localizados em diferentes posições ao longo da cadeia acil de fosfolipídios. Além disso, técnicas de DNA recombinante e mutações sítio dirigidas foram utilizadas para produzir mutantes de EcDHODH no qual um sondas paramagnéticas foram seletivamente ligadas em resíduos localizados na extensão N-terminal da proteína para experimentos subseqüentes de RPE-SDSL. Esses são os primeiros experimentos de marcação de spin sítio dirigida realizados no Brasil e com os quais monitoramos a dinâmica experimentada na região do N-terminal. Além disso, várias tentativas foram feitas para se expressar e purificar a enzima XfDHODH e a estabilidade estrutural da enzima TcDHODH na presença de um de seus inibidores naturais, o orotato, foi monitorada através de experimentos de Dicroísmo Circular (CD). / Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes which catalyse the conversion of (S)-dihydroorotate to orotate, in the fourth step of the de novo biosynthesis of pyrimidine nucleotides. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies for nucleotide synthesis. Moreover certain parasites lack salvage enzymes, relying solely on the de novo pathway to produce nucleotides. Thus, DHODH has turned out an excellent target to the development of inhibitors that block nucleotide biosynthesis. E. coli DHODH (EcDHODH) and X. fastidiosa DHODH (XfDHODH) are class 2 DHODHs found associated to cytosolic membranes through an N-terminal extension, whereas T. cruzi DHODH (TcDHODH) is a class 1 DHODH localizated in the cytoplasm. In the present work, we used a combination of molecular biology and biochemical methodologies with spectroscopic techniques to obtain structural and functional information on DHODH. On one hand, Electronic Paramagnetic Resonance (EPR) associated with Site-directed Spin Labeling (SDSL) and spectral simulation were employed to study the interaction of EcDHODH with vesicles. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions along the phospholipid acyl chain and via spin labels located at enzyme specific positions. On the other hand, DNA techniques and site-directed mutagenesis were used to produce mutants of EcDHODH where a nitroxide spin probe was selectively attached to some residues located at the protein N-terminal extension for subsequent EPR-SDSL experiments. These are the first site-directed spin labeling experiments performed in Brazil and the spectra allowed us to monitor dynamics experienced by those residues at the EcDHODH N-terminal domain. Furthermore, molecular biology and biochemical assays were employed with the objective of expressing and purifying XfDHODH and Circular Dichroism (CD) was utilized to probe the structural stability of TcDHODH in the presence of its natural inhibitor (orotate).
6

Estudos da dinâmica estrutural da proteína ligante de cálcio S100A12 humana e da lisozima T4 / Structural dynamics studies of human calcium binding protein S100A12 and T4 lysozyme

Ana Paula da Silva Citadini 28 April 2011 (has links)
O trabalho ora apresentado foi concebido como tendo dois objetivos. O primeiro, mais geral, foi implementar uma nova metodologia para o estudo de mudanças conformacionais em proteínas, ou seja, de sua dinâmica estrutural. A técnica de marcação de spin sítio dirigida aliada à ressonância paramagnética eletrônica (SDSL-RPE) são os pilares desse novo método que faz, agora, parte do conjunto de técnicas disponíveis no Grupo de Biofísica Molecular Sérgio Mascarenhas do Instituto de Física de São Carlos (USP). O segundo objetivo, mais específico, representou o caminho efetivamente tomado para que se alcançasse o objetivo geral. Para isso, foi proposto o estudo da correlação estrutura e função de dois sistemas biológicos muito interessantes. O primeiro deles envolveu o estudo do movimento das hélices que compõem a estrutura da proteína ligante de cálcio S100A12 humana (HS100A12) induzido pelos íons cálcio e zinco. Sabendo que a proteína S100A12 humana além de ligar íons Ca+2, apresenta afinidade por outros metais divalentes, como os íons Zn+2 e Cu+2, e que a formação de diferentes oligômeros da proteína é governada pela concentração dos íons Ca+2 e Zn+2, realizamos estudos espectroscópicos utilizando a técnica de dicroísmo circular a fim de investigarmos a estabilidade térmica da proteína HS100A12 na presença e ausência dos íons cálcio e zinco. Mudanças conformacionais na estrutura da HS100A12 foram monitoradas através da construção de uma série de mutantes (simples e duplos) em que resíduos nas hélices B, C e D foram trocados por cisteínas, subsequentemente marcadas com a sonda magnética MTSSL e submetidas às análises de SDSL-RPE. Estas consistiram na medida do espectro de RPE dos vários mutantes em temperatura ambiente para estudarmos os efeitos da presença dos íons sobre a dinâmica experimentada pela sonda nas diversas posições. Além disso, efetuamos medidas de distância entre duas sondas seletivamente inseridas na estrutura protéica, procurando assim complementar o entendimento acerca do efeito da presença dos íons sobre a proteína. Por fim, devido ao fato da proteína HS100A12 estar envolvida em alguns eventos de sinalização celular e interação com o receptor para produtos de glicosilação (RAGE), decidimos também, estudar a interação da proteína com modelos de biomembranas, utilizando monocamadas de Langmuir. O outro problema de interesse utilizou a lizosima do fago T4, uma proteína padrão, da qual uma variedade de mutantes é produzida rotineiramente a fim de obtermos mais detalhes a respeito da sua correlação estrutura e função e tornar mais sólido o entendimento da técnica SDSL. Inicialmente, realizamos um estudo com a suposta criação de uma cavidade no \"core\" hidrofóbico da porção C-terminal da enzima, quando mutamos a Leu 133 por Ala e/ou Gly, ou seja, quando trocamos um resíduo grande por um de menor volume, pois se acredita que a proteína sofra um reajuste estrutural com o intuito de preencher o espaço vazio criado por essa substituição. Para isso, propusemos estudar por SDSL o movimento da α-hélice H inserindo o marcador de spin na posição vizinha ao resíduo mutado. Adicionalmente, realizamos um experimento de \"transmutação\" com a enzima T4L, a fim de investigar a natureza das contribuições para os diferentes modos dinâmicos experimentados pelo marcador de spin quando introduzido em sítios topologicamente semelhantes. / The work presented here was conceived with two main objectives. The first one, more general, involved the implementation of a new methodology for the study of conformational changes in proteins, i.e., its structural dynamics. The technique of Site-directed Spin Labeling combined with Electronic Paramagnetic Resonance (SDSL-EPR) are the pillars of this new method, which is now part of the set of techniques available at the Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos (USP). The second objective, more specific, represented the path actually taken to achieve the overall goal. Therefore, it was proposed to study the structure-function correlation in two interesting biological systems. The first involved the study of the movement of the helices that form the structure of the human calcium binding protein S100A12 (HS100A12) induced by calcium and zinc ions. Knowing that, besides Ca+2, human S100A12 has also affinity for other divalent metals, such as Zn+2 and Cu+2 ions, and that the formation of different protein oligomers is governed by the concentration of Ca+2 and Zn+2, we performed spectroscopic studies using circular dichroism (CD) to investigate the thermal stability of protein HS100A12 in the presence and absence of calcium and zinc. Conformational changes in the structure of HS100A12 were monitored by producing a series of mutants (singles and doubles) in which residues in helices B, C and D were replaced by cysteine and subsequently labeled with a magnetic probe MTSSL and then analyzed via SDSL-EPR. The latter consisted of the EPR spectra measurement of many mutants at room temperature to study the effects of the presence of ions on the dynamics experienced by the probe in different positions. In addition, we performed measurements of the distance between two probes inserted in the protein structure, thereby, seeking to improve the understanding of the effect of the ions presence on the protein. Finally, due to the fact that HS100A12 is involved in some events of cell signaling and interaction with the Receptor for Advanced Glycation End Products (RAGE), we also decided to study the interaction of protein with models of biomembranes using Langmuir monolayers. In the other problem of interest, we used a variety of mutants of the enzyme T4 lysozyme, a protein standard, in order to obtain more details about its structure-function correlation and make more solid the understanding of SDSL technique. Initially, we conducted a study about the alleged creation of a cavity in the hydrophobic C-terminal portion of the enzyme, when we replaced the Leu 133 by Ala and/or Gly, or when we changed a large residue for a smaller one, because it is believed that the protein undergoes a structural adjustment in order to fill the gap created by this substitution. For this, we studied by SDSL the α-helix H motion, inserting the spin label in a neighbor position of the mutated residue. Additionally, we performed an experiment of \"transmutation\" with the enzyme T4L in order to investigate the nature of contributions for different dynamic modes experienced by the spin label when it is introduced in topologically similar sites.

Page generated in 0.1137 seconds