• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Discovery and evolution of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering

Jelicic, Milica 06 December 2023 (has links)
Tyrosine site-specific recombinases (Y-SSRs) are DNA editing enzymes that play a valuable role for the manipulation of genomes, due to their precision and versatility. They have been widely used in biotechnology and molecular biology for various applications, and are slowly finding their spot in gene therapy in recent years. However, the limited number of available Y-SSR systems and their often narrow target specificity have hindered the full potential of these enzymes for advanced genome engineering. In this PhD thesis, I conducted a comprehensive investigation of novel Y-SSRs and their potential for advancing genome engineering. This PhD thesis aims to address the current limitations in the genetic toolbox by identifying and characterizing novel Cre-type recombinases and demonstrating their impact on the directed evolution of designer recombinases for precise genome surgery. To achieve these aims, I developed in a collaboration a comprehensive prediction pipeline, combining a rational bioinformatical approach with knowledge of the biological functions of recombinases, to enable high success rate and high-throughput identification of novel tyrosine site-specific recombinase (Y-SSR) systems. Eight putative candidates were molecularly characterized in-depth to ensure their successful integration into future genome engineering applications. I assessed their activity in prokaryotes (E. coli) and eukaryotes (human cell lines), and determined their specificity in the sequence space of all known Cre- type target sites. The potential cytotoxicity associated with cryptic genomic recombination sites was also explored in the context of recombinase applicability. This approach allowed the identification of novel Y-SSRs with distinct target sites, enabling simultaneous use of multiple Y-SSR systems, and provided knowledge that will facilitate the assignment of novel and known recombinases to specific uses or organisms, ensuring their safe and effective implementation. The introduction of these novel Y-SSRs into the genome engineering toolbox opens up new possibilities for precise genome manipulation in various applications. The broader targetability offered by these enzymes could accelerate the development of novel gene therapies, as well as advance the understanding of gene function and regulation. Moreover, these recombinases could be used to design custom genetic circuits for synthetic biology, allowing researchers to create more complex and sophisticated cellular systems. Finally, I introduced the novel Y-SSRs into efforts aimed at developing designer recombinases for precise genome surgery, demonstrating their impact on accelerating the directed evolution process. Therapeutically relevant recombinases with altered DNA specificity have been developed for excision or inversion of specific DNA sequences. However, the potential for evolving recombinases capable of integrating large DNA cargos into naturally occurring lox-like sites in the human genome remained untapped so far. Thus, I embarked on evolving the Vika recombinase to mediate the integration of DNA cargo into a native human sequence. I discovered that Vika could integrate DNA into the voxH9 site in the human genome, and then, I enhanced the process through directed evolution. The evolved variants of Vika displayed a marked improvement in integration efficiency in bacterial systems. However, the translation of these results into mammalian systems has not yet been entirely successful. Despite this, the study laid the groundwork for future research to optimize the efficiency and applicability of Y-SSRs for genomic integration. In summary, this thesis made significant strides in the identification, characterization, and development of novel Y-SSRs for advanced genome engineering. The comprehensive prediction pipeline, combined with in-depth molecular characterization, has expanded the genetic toolbox to meet the growing demand for better genome editing tools. By exploring efficiency, cross-specificity, and potential cytotoxicity, this research lays the foundation for the safe and effective application of novel Y-SSRs in various therapeutic settings. Furthermore, by demonstrating the potential of these recombinases to improve efforts in creating designer recombinases through directed evolution, this research has opened new avenues for precise genome surgery. The successful development and implementation of these novel recombinases have the potential to revolutionize gene therapy, synthetic biology, and our understanding of gene function and regulation.
22

Studies of conformational changes and dynamics accompanying substrate recognition, allostery and catalysis in bacteriophage lambda integrase

Subramaniam, Srisunder 19 April 2005 (has links)
No description available.
23

DEVELOPMENT OF AN ADVANCED GENETIC TOOLBOX TO ENABLE GENOME SCALE ENGINEERING IN SINORHIZOBIUM MELILOTI

MacLeod, Michael R. January 2018 (has links)
Synthetic biology has ushered in a new age of molecular biology with the aim towards practical developments in disciplines ranging from medicine, agriculture, and industry. Presently, it remains difficult to manipulate the genomes of many organisms due to lack of genetic tools. These problems can be circumvented by cloning large fragments of DNA into strains where many genetic tools are in place, such as Saccharomyces cerevisiae. However, this organism is unable to directly transfer cloned DNA to other organisms and is unable to stably maintain DNA with a G+C content >40%. Many organisms relevant in biotechnology often have G+C content DNA >60%, and therefore are difficult to engineer. Here, the soil bacteria Sinorhizobium meliloti was chosen as a host strain to clone and manipulate large fragments of high G+C content DNA. S. meliloti is a Gram-negativeα-proteobacteria that forms symbiotic relationships with legumes to fix nitrogen. It has a multi-partite genome with a G+C content of 62.7% that includes a chromosome (3.65 Mb), the pSymA (1.35 Mb), and pSymB (1.68 Mb) replicons. A restriction endonuclease hsdR mutant strain lacking pSymA and pSymB was created and used in this study. Multi-host shuttle (MHS) vectors were constructed that allow for direct transfer and maintenance of DNA in E. coli, S. cerevisiae, and P. tricornutum. Characterization of strains was conducted to determine transduction, conjugation, and transformation frequencies, as well as stability of MHS plasmids. Furthermore, a proof-of-concept experiment was conducted to clone large plasmids (70-205 kb) with G+C content >58% via site-specific recombination at a landing pad in the MHS vector, which was then verified using colony PCR. This work demonstrates the usefulness of S. meliloti containing a MHS vector for cloning of large fragments with high G+C content DNA, a technology that may be used for several applications in both applied and basic research. / Thesis / Master of Science (MSc) / Synthetic biology is an emerging field that incorporates principles of molecular biology and engineering for the design and construction of biological systems for application in medicine, agriculture, and industry. Presently, it remains difficult to modify genomes of several organisms due to lack of available techniques. Yeast is currently used for the modification of large DNA pieces, however it is unable to transfer and maintain modified DNA with high G+C content. Here, the bacteria Sinorhizobium meliloti was used as a host organism to conduct genetic engineering due to its ability to maintain large DNA pieces with a high G+C content. Characterization experiments were conducted to assess the efficiency of this organism for this task. Using this strain, a proof-of-concept experiment to demonstrate the uptake and maintenance of large, high G+C DNA pieces was completed. This technology may be useful in biotechnology applications for engineering of large DNA pieces from industrially relevant organisms.
24

Development and characterization of two new tools for plant genetic engineering: A CRISPR/Cas12a-based mutagenesis system and a PhiC31-based gene switch

Bernabé Orts, Juan Miguel 16 December 2019 (has links)
Tesis por compendio / [ES] La mejora genética vegetal tiene como objetivo la obtención de plantas con rasgos mejorados o características novedosas que podrían ayudar a superar los objetivos de sostenibilidad. Para este fin, la biotecnología vegetal necesita incorporar nuevas herramientas de ingeniería genética que combinen una mayor precisión con una mayor capacidad de mejora. Las herramientas de edición genética recientemente descubiertas basadas en la tecnología CRISPR/Cas9 han abierto el camino para modificar los genomas de las plantas con una precisión sin precedentes. Por otro lado, los nuevos enfoques de biología sintética basados en la modularidad y la estandarización de los elementos genéticos han permitido la construcción de dispositivos genéticos cada vez más complejos y refinados aplicados a la mejora genética vegetal. Con el objetivo final de expandir la caja de herramientas biotecnológicas para la mejora vegetal, esta tesis describe el desarrollo y la adaptación de dos nuevas herramientas: una nueva endonucleasa específica de sitio (SSN) y un interruptor genético modular para la regulación de la expresión transgénica. En una primera parte, esta tesis describe la adaptación de CRISPR/Cas12a para la expresión en plantas y compara la eficiencia de las variantes de Acidaminococcus (As) y Lachnospiraceae (Lb) Cas12a con Streptococcus pyogens Cas9 (SpCas9) descritos anteriormente en ocho loci de Nicotiana benthamiana usando expresión transitoria. LbCas12a mostró la actividad de mutagénesis promedio más alta en los loci analizados. Esta actividad también se confirmó en experimentos de transformación estable realizados en tres plantas modelo diferentes, a saber, N. benthamiana, Solanum lycopersicum y Arabidopsis thaliana. Para este último, los efectos mutagénicos colaterales fueron analizados en líneas segregantes sin la endonucleasa Cas12a, mediante secuenciación del genoma descartándose efectos indiscriminados. En conjunto, los resultados muestran que LbCas12a es una alternativa viable a SpCas9 para la edición genética en plantas. En una segunda parte, este trabajo describe un interruptor genético reversible destinado a controlar la expresión génica en plantas con mayor precisión que los sistemas inducibles tradicionales. Este interruptor, basado en el sistema de recombinación del fago PhiC31, fue construido como un dispositivo modular hecho de partes de ADN estándar y diseñado para controlar el estado transcripcional (encendido o apagado) de dos genes de interés mediante la inversión alternativa de un elemento regulador central de ADN. El estado del interruptor puede ser operado externa y reversiblemente por la acción de los actuadores de recombinación y su cinética, memoria y reversibilidad fueron ampliamente caracterizados en experimentos de transformación transitoria y estable en N. benthamiana. En conjunto, esta tesis muestra el diseño y la caracterización funcional de herramientas para la ingeniería del genómica y biología sintética de plantas que ahora ha sido completada con el sistema de edición genética CRISPR/Cas12a y un interruptor genético reversible y biestable basado en el sistema de recombinación del fago PhiC31. / [CA] La millora genètica vegetal té com a objectiu l'obtenció de plantes amb trets millorats o característiques noves que podrien ajudar a superar els objectius de sostenibilitat. Amb aquesta finalitat, la biotecnologia vegetal necessita incorporar noves eines d'enginyeria genètica que combinen una major precisió amb una major capacitat de millora. Les eines d'edició genètica recentment descobertes basades en la tecnologia CRISPR/Cas9 han obert el camí per modificar els genomes de les plantes amb una precisió sense precedents. D'altra banda, els nous enfocaments de biologia sintètica basats en la modularitat i l'estandardització dels elements genètics han permès la construcció de dispositius genètics cada vegada més complexos i sofisticats aplicats a la millora genètica vegetal. Amb l'objectiu final d'expandir la caixa d'eines biotecnològiques per a la millora vegetal, aquesta tesi descriu el desenvolupament i l'adaptació de dues noves eines: una nova endonucleasa específica de lloc (SSN) i un interruptor genètic modular per a la regulació de l'expressió transgènica . En una primera part, aquesta tesi descriu l'adaptació de CRISPR/Cas12a per a l'expressió en plantes i compara l'eficiència de les variants de Acidaminococcus (As) i Lachnospiraceae (Lb) Cas12a amb la ben establida Streptococcus pyogens Cas9 (SpCas9), en vuit loci de Nicotiana benthamiana usant expressió transitòria. LbCas12a va mostrar l'activitat de mutagènesi mitjana més alta en els loci analitzats. Aquesta activitat també es va confirmar en experiments de transformació estable realitzats en tres plantes model diferents, a saber, N. benthamiana, Solanum lycopersicum i Arabidopsis thaliana. Per a aquest últim, els efectes mutagènics col·laterals van ser analitzats en línies segregants sense l'endonucleasa Cas12a, mitjançant seqüenciació completa del genoma i descartant efectes indiscriminats. En conjunt, els resultats mostren que LbCas12a és una alternativa viable a SpCas9 per a l'edició genètica en plantes. En una segona part, aquest treball descriu un interruptor genètic reversible destinat a controlar l'expressió gènica en plantes amb major precisió que els sistemes induïbles tradicionals. Aquest interruptor, basat en el sistema de recombinació del bacteriòfag PhiC31, va ser construït com un dispositiu modular fet de parts d'ADN estàndard i dissenyat per controlar l'estat transcripcional (encès o apagat) de dos gens d'interès mitjançant la inversió alternativa d'un element regulador central d'ADN. L'estat de l'interruptor pot ser operat externa i reversiblement per acció dels actuadors de recombinació i la seva cinètica, memòria i reversibilitat van ser àmpliament caracteritzats en experiments de transformació transitòria i estable en N. benthamiana. En conjunt, aquesta tesi mostra el disseny i la caracterització funcional d'eines per a l'enginyeria del genòmica i biologia sintètica de plantes que ara ha sigut completat amb el sistema d'edició genètica CRISPR/Cas12a i un interruptor genètic biestable i reversible basat en el sistema de recombinació del bacteriòfag PhiC31. / [EN] Plant breeding aims to provide plants with improved traits or novel features that could help to overcome sustainability goals. To this end, plant biotechnology needs to incorporate new genetic engineering tools that combine increased precision with higher breeding power. The recently discovered genome editing tools based on CRISPR/Cas9 technology have opened the way to modify plant¿s genomes with unprecedented precision. On the other hand, new synthetic biology approaches based on modularity and standardization of genetic elements have enabled the construction of increasingly complex and refined genetic devices applied to plant breeding. With the ultimate goal of expanding the toolbox of plant breeding techniques, this thesis describes the development and adaptation to plant systems of two new breeding tools: a site-specific nuclease (SSNs), and a modular gene switch for the regulation of transgene expression. In a first part, this thesis describes the adoption of the SSN CRISPR/Cas12a for plant expression and compares the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described Streptococcus pyogens Cas9 (SpCas9) in eight Nicotiana benthamiana loci using transient expression experiments. LbCas12a showed highest average mutagenesis activity in the loci assayed. This activity was also confirmed in stable genome editing experiments performed in three different model plants, namely N. benthamiana, Solanum lycopersicum and Arabidopsis thaliana. For the latter, off-target effects in Cas12a-free segregating lines were discarded at genomic level by deep sequencing. Collectively, the results show that LbCas12a is a viable alternative to SpCas9 for plant genome engineering. In a second part, this work describes the engineering of a new reversible genetic switch aimed at controlling gene expression in plants with higher precision than traditional inducible systems. This switch, based on the bacteriophage PhiC31 recombination system, was built as a modular device made of standard DNA parts and designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally and reversibly operated by the action of the recombination actuators and its kinetics, memory, and reversibility were extensively characterized in N. benthamiana using both transient expression and stable transgenics. Altogether, this thesis shows the design and functional characterization of refined tools for genome engineering and synthetic biology in plants that now has been expanded with the CRISPR/Cas12a gene editing system and the phage PhiC31-based toggle switch. / Bernabé Orts, JM. (2019). Development and characterization of two new tools for plant genetic engineering: A CRISPR/Cas12a-based mutagenesis system and a PhiC31-based gene switch [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133055 / Compendio
25

Biotechnological approaches to fight fruit flies of agricultural importance / Biotechnologische Ansätze zur Fruchfliegen landwirtschaftlicher Bedeutung zu kämpfen

Ogaugwu, Christian Ejikeme 18 April 2012 (has links)
No description available.

Page generated in 0.14 seconds