Spelling suggestions: "subject:"size dffects"" "subject:"size diffects""
41 |
Phase formation and size effects in nanoscale silicide layers for the sub-100 nm microprocessor technologyRinderknecht, Jochen 13 July 2005 (has links)
Silizide spielen ein wesentliche Rolle in den technologisch fortschrittlichsten CMOS Bauteilen. Sie finden Verwendung als Kontaktmaterial auf den Aktivgebieten und dem Silizium Gatter von Transistoren. Diese Arbeit beschäftigt sich mit den Systemen: Co-Si, Co-Ni-Si und Ni-Si. Sowohl in situ Hochtemperatur-SR-XRD Experimente als auch CBED wurden zur Phasenidentifikation herangezogen. AES erlaubte es, Elementverteilungen in Schichtstapeln zu bestimmen. Für Studien über Agglomerationserscheinungen wurde REM eingesetzt. TEM und analytisches TEM trugen nicht nur zu Einblicken in Schichtstrukturen und Kornformen bei, sondern lieferten auch Daten zu Elementverteilungen in Silizidschichten. Diese Dissertation gliedert sich in zwei Hauptteile. Der erste Teil beschäftigt sich mit den Phasenbildungsabfolgen und den Phasenbildungs- und Umwandlungstemperaturen in nanoskaligen dünnen Schichten. Als Trägermaterial wurden einkristalline und polykristalline Siliziumsubstrate verwendet. Der Einfluß verschiedener Dotierungen im Vergleich zu undotierten Substraten sowie die Beeinflussung der Silizidierung durch eine Deckschicht wurden untersucht. Im zweiten Teil waren Größeneffekte verschiedener Schichtdicken und Agglomerationserscheinungen Gegenstand von Untersuchungen. Unterschiede bei der Silizidierung in Zusammenhang mit unterschiedlichen Schichtdicken wurden bestimmt. Darüberhinaus wurde eine ternäre CoTiSi Phase gefunden und identifiziert. Außerdem konnte die stark eingeschränkte Mischbarkeit der Monosilizide CoSi und NiSi gezeigt werden. Der thermische Ausdehnungskoeffizient von NiSi im Temperaturbereich 400?700°C und sein nicht-lineares Verhalten wurden bestimmt. / Silicides are an essential part of state-of-the-art CMOS devices. They are used as contact material on the active regions as well as on the Si gate of a transistor. In this work, investigations were performed in the systems Co-Si, Co-Ni-Si, and Ni-Si. In situ high temperature SR-XRD and CBED techniques were used for phase identification. AES enabled the determination of elemental concentrations in layer stacks. SEM was applied to agglomeration studies. TEM imaging and analytical TEM provided insights into layer structures, grain morphology as well as information about the distribution of chemical elements within silicide layers. This thesis is divided into two main parts. The first part deals with the phase formation sequences and the phase formation and conversion temperatures in nanoscale thin films on either single crystal or polycrystalline Si substrates. The effect of different types of dopants vs. no doping and the impact of a capping layer on the phase formation and conversion temperatures were studied. In the second part, size effects and agglomeration of thin silicide films were investigated. The effect of different layer thicknesses on the silicidation process was studied. Additionally, the degree of agglomeration of silicide films was calculated. Furthermore, the ternary CoTiSi phase was found and identified as well as the severely limited miscibility of the monosilicides CoSi and NiSi could be shown. The CTE of NiSi between 400?700 ±C and its non-linear behavior was determined.
|
42 |
Hétérostructures allotropiques de semiconducteurs IV dans des nanofils : nouvelles opportunités more-than-Moore / Allotropic heterostructured nanowires based of group IV semiconductors : new opportunities for more-than-Moore applicationsDjomani-Siawa, Doriane 29 March 2018 (has links)
Nous avons découvert une méthode originale pour produire une transformation de phase dans les nanofils de Ge et Si(de structure cubique diamant 3C).Sous l’action d’une contrainte externe à chaud, des nanodomaines de structure hexagonale diamant 2H se forment de manière quasi-périodique le long du fil ce qui résulte en un réseau 1D d’hétérostructures 3C/2H.Dans ce contexte,ce projet de thèse vise à mettre en lumière les mécanismes de cette transformation de phase et à caractériser les propriétés physiques de la phase 2H.Nous avons mis en place des analyses structurales systématiques dans les nanofils de Ge et Si-3C/2H pour mettre en évidence les paramètres clés de la transformation de phase.Les nanodomaines 2H sont formés dans des bandes de cisaillement de direction e2-5-5e.Une relation d’orientation a été mise en évidence:(1-10)3C//(-2110)2H et (110)3C//(0001)2H et les bandes 2H reposent majoritairement sur les plans d’interface (115)3C.Les études préliminaires montrent que la contrainte de cisaillement et le budget thermique sont nécessaires à la transformation avec une température seuil minimale de 350°C et 500°C pour le Ge et le Si respectivement,ces conditions sont caractéristiques d’une transformation martensitique.Les paramètres clés identifiés : l’orientation cristallographique et le diamètre des nanofils.Dans les nanofils de Si, la formation des bandes de cisaillement et donc des domaines 2H est induite par la composante de contrainte de cisaillement dans la direction de glissement du plan interfacial 3C/2H. D’après ces résultats, la transformation de phase serait compatible avec un mécanisme de relaxation plastique via la formation des bandes de cisaillement (5-5-2)(1-15)3C.Nous avons réalisé des mesures Raman spatialement résolues sur nanofil unique de Ge- et Si-3C/2H afin de mettre en évidence les modes de phonons optiques. Dans le Ge, nous avons détecté deux pics Raman à 288 cm−1 et 301 cm−1 attribués aux modes E2g et E1g + A1g + F2g. Dans le Si, nous avons observé trois pics Raman à 498, 515 et 520 cm−1 respectivement associés aux modes E2g, A1g et F2g. Ces valeurs coïncident avec les calculs reportés.Nous avons également mesuré les largeurs de bandes interdites dans les nanofils de Ge-3C/2H par spectroscopie infrarouge à transformée de Fourier:nous avons obtenu un gap direct à 0,58 eV attribué à la phase 2H et un gap indirect à 0,72 eV qui proviendrait vraisemblablement de la phase 3C.Ces valeurs constituent les premières mesures expérimentales du gap de la phaseGe-2H et vont dans le sens des calculs théoriques qui prédisent un gap étroit et direct. La phase 2H peut également être obtenue dans le massif de Si et Ge après décompression dans une cellule à enclumes de diamant menant à la phase BC8 qui se convertit à température ambiante(dans le Ge) ou à chaud(dans le Si) en phase 2H. Afin de comparer les propriétés du massif, nous avons réalisé des mesures in-situ par spectroscopie Raman et par diffraction des rayons X dans le massif en étudiant différents chemins de décompression. A température ambiante,nous obtenons soit la phase Ge-ST12, soit un mélange des phases Ge-ST12 et Ge-BC8 en fonction de la vitesse de décompression.La nucléation de la phase 2H est donc complexe car elle dépend fortement du chemin de décompression et des conditions hydrostatiques dans la cellule. Ces études révèlent de plus un effet de taille. Dans les nanofils de Ge,nous observons après décompression un retour vers la phase 3C avec une composante amorphe.Les mesures in-situ du gap dans le Ge massif et les nanofils de Ge en fonction de la pression confirment cet effet de taille. Après décompression dans le Ge massif, nous obtenons un gap direct égal à 0,53 eV et un gap indirect valant 0,73 eV. Ces valeurs sont liées à la structure de bandes de la phase Ge-ST12 et s’accordent avec les récents résultats reportés.La mesure dans les nanofils de Ge présente un comportement d’hystérésis avec le retour vers le gap initial après décompression. / We have demonstrated an original way to induce a phase transformation in Si and Ge nanowires under external shear-stress. The transformation results in an unprecedented heterostructure with quasiperiodic embedded Ge-2H nanodomains distributed all along the nanowire. My thesisproject aims at understanding the mechanisms of this phase transformation and at characterizing the physical properties of the heterostructures 2H/3C in Si and Ge nanowires.We have carried out systematic structural analysis in Si- and Ge-2H/3C nanowires to evidence the key parameters of this phase transformation.The phase transformation occurs in shear bands localized along the (2-5-5) direction.The heterostructured nanowires are defined by a specific orientation relationship between the 3C and the 2H bands (both in Si and Ge nanowires)given by(1-10)3C//(-2110)2H and (110)3C//(0001)2H with the 2H bands lying mainly on (115)3C planes.The preliminary studies showed that shear-stress and the thermal budget above a threshold temperature of 350°C in Ge and 500°C in Si are mandatory for this transformation. These conditions meet the common criteria of a martensitic phase transformation. We have identified two key intrinsic parameters:the temperature and the nanowires crystallographic axis.In Si nanowires, we found that the formation of the shear bands i.e. the 2H nanodomains is related to the component of the shear-stress along the glide direction of the 3C/2H interface plane.Based on these results,the transformation could be consistent with a stress relief mechanism through the formation of (5-5-2)(1-15)3C shear bands.We have performed spatially resolved Raman measurements on single Si and Ge heterostructured nanowires to characterize their optical phonon modes.In Ge,we have detected 2 Raman bands at 288 cm⁻ ᴵ and 301 cm⁻ ᴵ attributed to the E2g and E1g + A1g + F2g modes.In Si, we have observed 3 Raman bands at 498, 515 and 520 cm⁻ ᴵ that are associated respectively to the E2g, A1g and F2g modes.Those values agree well with the literature.Moreover, we have performed Fourier Transform Infrared spectroscopy on transformed Ge nanowires to measure the optical band gap of the 2H phase.We have obtained a direct band gap of 0,58 eV attributed to the 2H phase and an indirect bandgap of 0,72 eV that might stem from the 3C phase. Those results are the first experimental data of the Ge-2H band gap.The values align well with the simulations that predict a narrow direct band gap for this structure.The 2H structure can also be achieved in bulk Si and Ge after unloading of the BC8 phase in a diamond anvil cell.The BC8 phase is unstable and convertsinto the 2H phase at room temperature in Ge or by thermal annealing in Si.In order to compare the bulk properties of the 2H phase, we have performedin-situ Raman and X-ray diffraction experiments in bulk samples by studyingvarious unloading pathways. In particular, unloading at room temperature ledto the formation of the ST12 phase or a mixture of the BC8 and ST12 phasesdepending on the unloading rate.The formation of the 2H phase is thuscomplex given its dependency on the unloading conditions and the hydrostaticconditions within the cell that are difficult to garanty. Our studies also reveala size effect. After unloading of Ge-3C nanowires, the nanostructures revertback to the 3C phase with an amorphous component detected.In addition, we have carried out in-situ band gap measurements in bulk Ge and Ge nanowires as a function of pressure.After unloading, we havemeasured optical gap values that are related to the band structure of theGe-ST12 allotrope with a direct bandgap of 0,53 eV and an indirect bandgapof 0,73 eV.Those results are consistent with the experimental values reported.The experiments on Ge nanowires showed an hysteresis behavior with theinitial value of the band gap measured after unloading.Those results clearly evidenced novel relaxation mechanisms at the nanoscale that need to be investigated.
|
43 |
Modeling framework for ageing of low alloy steelBoåsen, Magnus January 2019 (has links)
Ageing of low alloy steel in nuclear applications commonly takes the form as a hardening and an embrittlement of the material. This is due to the evolution of the microstructure during irradiation and at purely thermal conditions, as a combination or separate. Irradiation introduces evenly distributed solute clusters, while thermal ageing has been shown to yield a more inhomogeneous distribution. These clusters affect the dislocation motion within the material and results in a hardening and in more severe cases of ageing, also a decreased work hardening slope due to plastic strain localization into bands/channels. Embrittlement corresponds to decreased fracture toughness due to microstructural changes resulting from ageing. The thesis presents a possible framework for modeling of ageing effects in low alloy steels.In Paper I, a strain gradient plasticity framework is applied in order to capture length scale effects. The constitutive length scale is assumed to be related to the dislocation mean free path and the changes this undergoes during plastic deformation. Several evolution laws for the length scale were developed and implemented in a FEM-code considering 2D plane strain. This was used to solve a test problem of pure bending in order to investigate the effects of the length scale evolution. As all length scale evolution laws considered in this study results in a decreasing length scale; this leads to a loss of non-locality which causes an overall softening at cases where the strain gradient is dominating the solution. The results are in tentative agreement with phenomena of strain localization that is occurring in highly irradiated materials.In Paper II, the scalar stress measure for cleavage fracture is developed and generalized, here called the effective normal stress measure. This is used in a non-local weakest link model which is applied to two datasets from the literature in order to study the effects of the effective normal stress measure, as well as new experiments considering four-point bending of specimens containing a semi-elliptical surface crack. The model is shown to reproduce the failure probability of all considered datasets, i.e. well capable of transferring toughness information between different geometries. / Åldring av låglegerade stål i kärntekniska användningsområden framträder typiskt som ett hårdnande och en försprödning av materialet. Detta på grund av utvecklingen av mikrostrukturen under bestrålning och under rent termiska förhållanden. Bestrålning introducerar jämt fördelade kluster av legeringsämnen. Termisk åldring har däremot visats ge upphov till en mer ojämn fördelning. Klustren hämmar dislokationsrörelsen i materialet och ger därigenom upphov till en ökning av materialets sträckgräns, vid en mer påtaglig åldring det även leda till ett sänkt arbetshårdnande på grund av lokalisering av plastisk töjning i s.k. kanaler/band. Försprödning är en sänkning av materialets brottseghet som en följd av de mikrostrukturella förändringar som sker vid åldring. Arbetet som presenteras i den här avhandlingen har gjorts i syfte till att ta fram ett möjligt ramverk för modellering av låglegerade stål.I Artikel I, används en töjningsgradientbaserad plasticitetsteori för att kunna fånga längdskalebeteenden. Längdskalan i teorin antas vara relaterad till dislokationernas medelfria väg och den förändring den genomgår vid plastisk deformation. Flera utvecklingslagar för längdskalan har analyserats och implementerats i en finita element kod för 2D plan deformation. Denna implementering har använts för att lösa ett testproblem bestående av ren böjning med syfte att undersöka effekterna av utvecklingen hos längdskalan. Alla de utvecklingslagar som presenteras i artikeln ger en minskande längdskala, vilket leder till vad som valt att kallas förlust av icke-lokalitet. Fenomenet leder till ett övergripande mjuknande vid fall där den plastiska töjningsgradienten har stor inverkan på lösningen. Resultaten är i preliminär överenstämmelse med de typer av lokalisering av plastisk töjning som observerats i starkt bestrålade material.I Artikel II utvecklas ett generaliserat spänningsmått i syfte att beskriva klyvbrott, här benämnt effektivt normalspänningsmått. Detta har använts i samband med en icke-lokal svagaste länk modell, som har applicerats på två experimentella studier från den öppna litteraturen i syfte att studera effekterna av det effektiva normalspänningsmåttet. Utöver detta presenteras även nya experiment på ytspruckna provstavar under fyrpunktsböj. I artikeln visas att modellen återskapar sannolikheten för brott för alla undersökta experimentuppställningar, d.v.s. modellen visas vara väl duglig för att överföra brottseghet mellan geometrier. / <p>QC 20190312</p>
|
44 |
Modélisation et simulation multi échelle des effets de taille et des couplages électromécaniques dans les nanostructures / Multi-scale modeling of size effects and electromechanical couplings in nanostructuresHoang, Minh Tuan 17 October 2014 (has links)
Les nanostructures, et en particulier les nanofils semi-conducteurs, ont suscité ces dernières années un très grand intérêt pour de nombreuses applications comme les systèmes de récupération d'énergie ou les capteurs de très haute précision. Dans de telles structures des expérimentations et des calculs théoriques ab-initio ont mis en évidence des effets de taille, pouvant modifier significativement les propriétés électromécaniques pour des diamètres de fils en dessous de 10 nm. L'objectif de ce travail de thèse est de proposer des modélisations multi échelle des nanostructures électromécaniques, telles que les nanofils ioniques et des nanocomposites stratifiés, permettant de reproduire les effets de taille associés à l'échelle nanométrique dans un cadre continu, en se basant sur des calculs ab-initio pour identifier et valider les modèles. Dans une première partie, les effets de surface dans des nanofils piézoélectriques isolés homogènes sont modélisés. Une approche multi échelle est développée, incluant une modélisation continue des nanofils en prenant en compte une énergie de surface supplémentaire dans un cadre piézoélectrique, dont les paramètres associés sont identifiés par calculs ab-initio. Pour cela, une procédure basée sur un modèle de films minces est développée, permettant au travers de calculs ab-initio sur des films d'épaisseurs successives d'isoler l'énergie volumique et de surface, et d'en déduire les coefficients élastiques et piézoélectriques de surface. Les équations du modèle continu sont ensuite résolues par une méthode d'éléments finis incluant des éléments de surface adaptés. Le modèle multi échelle continu est comparé à des calculs ab-initio impliquant des modèles atomistiques complets de nanofils de différents diamètres (de 0,6 à 3,9 nm) pour valider les effets de taille des propriétés électromécaniques. Dans une deuxième partie, des modèles multi échelles sont construits en vue de modéliser les effets de taille pour des nanostructures hétérogènes. Ces structures incluent des nanofils revêtus, ou des nanocomposites stratifiés. Pour les nanofils avec hétérogénéités radiales, l'approche précédemment développée est étendue au cas des surfaces revêtues, et le modèle continu fait intervenir une énergie de surface incluant les effets du revêtement. Pour les nanocomposites stratifiés AlN/GaN, les effets de taille observés par calculs ab-initio sont dus à des effets d'interface et induisent des propriétés élastiques dépendantes des épaisseurs des couches. Un modèle de matériau homogénéisé continu est proposé, incluant un modèle d'interface imparfaite, permettant d'inclure les effets de taille, identifié par calculs ab-initio. Dans une dernière partie, des applications à des systèmes de nanogénérateurs à base de nanofils sont proposées, faisant intervenir des ensembles de nanofils alignés dans une matrice polymère et surmontés par une feuille de graphène. Les approches précédemment développées sont utilisées pour modéliser ces structures par éléments finis / Nanostructures, and more specifically semiconductor nanowires, have drawn special attention in recent years for many applications such as energy harvesting systems or sensors of very high precision. Many recent experiments and theoretical ab-initio calculations have evidenced size effects, which can significantly modify the electromechanical properties of nanowires for diameters below 10 nm. The objective of this thesis is to provide multi-scale modeling of electromechanical properties of nanostructures, such as ionic nanowires and laminated nanocomposites, to reproduce the size effects associated with nanoscale in a continuum model, based on ab-initio calculations to identify and validate the models. In a first part, the surface effects in isolated homogeneous piezoelectric nanowires are modeled. A multi-scale approach is developed, including continuous nanowires modeling taking into account an additional surface energy in the piezoelectric laminates where the associated parameters are identified by ab-initio calculations. For this, a procedure based on slabs is developed, allowing through first-principles calculations on successive slabs thicknesses to isolate the surface energy and to deduce the surface elastic and piezoelectric coefficients. The equations of the continuous model are then solved by a finite element method including appropriate surface elements. The continuous multi-scale model is compared with ab-initio calculations involving full atomistic models of nanowires with different diameters (from 0.6 to 3.9 nm) to validate model regarding size effects of electromechanical properties. In the second part, multi-scale models are constructed to describe the size effects for heterogeneous nanostructures. These structures include coated nanowires or laminated nanocomposites. For nanowires with radial heterogeneity, the previously developed approach is extended to the case of coated surfaces, and involves a continuous surface energy incorporating the effects of the coating. For laminated AlN/GaN nanocomposites, size effects observed by ab-initio calculations are caused by the presence of the interfaces and induce size-dependent elastic properties with respect to the layer thickness. A continuum model based on an imperfect interface is proposed to describe the size dependent effective elastic properties of the overall composite, which are identified by ab-initio calculations. In the last part, nanogenerators system based on nanowires are modeled, involving nanowires arrays aligned in polymer substrates with graphene electrode. The previously developed finite element models are used to simulate the electromechanical properties of such systems
|
45 |
Understanding mechanical size effects in metallic microwires : synergy between experiment and simulation / Comprendre les effets de tailles mécaniques dans les microfils métalliques : synergie entre expérience et simulationPurushottam Raj Purohit, Ravi Raj Purohit 19 October 2018 (has links)
Les microfils métalliques polycristallins produits par étirage à froid présentent une résistance mécanique significative en faisant des candidats idéaux pour les renforts de composites. Des études antérieures sur des fils de nickel polycristallin pur ont montré une dépendance importante par rapport à la taille de la limite d'élasticité et de la résistance à la traction, ainsi que de la ductilité.Le but de cette étude est de comprendre cet effet de la taille dans les microfils de nickel pur polycristallin par analyse de diffraction des rayons X in-situ (DRX) et simulations de la plasticité cristalline par éléments finis (CPFE). Des essais de traction monotone et cyclique in-situ sous rayonnement synchrotron ont été réalisés sur des microfils de diamètres allant de 100 à 40 μm. Les fils étirés à 100 micromètres obtenus dans le commerce présentent une architecture cœur-coquille avec une texture de fibre <111> dominante dans le cœur et une texture à double fibre hétérogène <111> et <100> dans la coquille. La réduction de la taille de l'échantillon par polissage électrolytique conduit à des fils ayant une microstructure homogène, tandis que la réduction de la taille de l'échantillon par un étirage à froid supplémentaire conduit à des fils avec une texture plus intense tout en conservant l'architecture cœur-coquille.La limite d'élasticité et la résistance à la traction des fils électropolis augmentent avec la diminution du diamètre, tandis que la ductilité diminue avec la réduction du diamètre. Dans le cas des fils étirés à froid, on observe que la limite d'élasticité et la résistance à la traction, ainsi que la ductilité, augmentent avec la diminution du diamètre. L'analyse DRX indique une plasticité successive des familles de grains sous iso-déformation. Nous avons observé que le gradient de la texture du microfil active des mécanismes de déformation qui ne sont pas observés pour les microfils à texture homogène. Pour comprendre l'influence de différents paramètres microstructuraux, notamment l'influence de la texture cristallographique, une microstructure représentative 3D a été générée et des simulations CPFE ont été réalisées. Le comportement simulé moyen des différentes familles de grains (<111>, <100>) concorde bien avec les résultats expérimentaux. La simulation CPFE indique une hétérogénéité du champ de contrainte à travers la microstructure en présence d'un gradient de texture cristallographique.Nous montrons que la micro-texture (texture simple ou double texture) et leur dispersion spatiale (homogène ou architecturée) peuvent être utilisées comme stratégie de conception pour obtenir une microstructure optimale en fonction de l’ensemble désiré de propriétés mécaniques. / Polycrystalline metallic microwires produced by cold-drawing exhibit significant mechanical strength that make them ideal candidates for reinforcement of composites. Previous studies on polycrystalline pure nickel wires have indicated a significant size dependence of their yield and tensile strength as well as their ductility. The aim of this study is to understand these size effects by in-situ X-ray diffraction (XRD) analysis and crystal plasticity finite element (CPFE) simulations. In-situ monotonous and cyclic tensile tests under synchrotron radiation were carried on microwires with diameters ranging from 100 to 40 µm. The commercially obtained 100µm as-drawn wires exhibit a core-shell architecture with <111> fiber texture dominant in core and heterogeneous dual fiber texture <111> and <100> in the shell. Reduction of specimen size by electropolishing leads to wires having a homogeneous microstructure, whereas reduction of specimen size by further cold drawing leads to wires with a sharper texture while retaining the core-shell architecture.The yield and tensile strength of the electropolished wires increase with decreasing diameter, whereas the ductility decrease with decreasing diameter. In the case of cold-drawn wires, the yield and tensile strength, and also the ductility was observed to increase with decreasing diameter. The XRD analysis indicates successive yielding of grain families under iso-strain condition. The gradient in the texture of the microwire was seen to activate deformation mechanisms which are not seen for microwires with homogeneous texture. To understand the influence of different microstructural parameters, and notably the influence of crystallographic texture, 3D representative microstructure was generated and CPFE simulations were carried out. The simulated average behavior of different grain families (<111>, <100>) agrees well with the experimental results. The CPFE simulations indicate heterogeneity in stress field across the microstructure in the presence of a gradient in crystallographic texture.We show that the microstructure engineering of micro-texture components (single- or dual-texture) and their spatial spread (homogenous or architectured) can be used as design guidelines for obtaining optimal microstructure in accordance with desired set of mechanical properties.
|
46 |
Development of Experimental and Finite Element Models to Show Size Effects in the Forming of Thin Sheet MetalsMorris, Jeffrey D 05 August 2019 (has links)
Abstract
An experimental method was developed that demonstrated the size effects in forming thin sheet metals, and a finite element model was developed to predict the effects demonstrated by the experiment. A universal testing machine (UTM) was used to form aluminum and copper of varying thicknesses (less than 1mm) into a hemispherical dome. A stereolithography additive manufacturing technology was used to fabricate the punch and die from a UV curing resin. There was agreement between the experimental and numerical models. The results showed that geometric size effects were significant for both materials, and these effects increased as the thickness of the sheets decreased. The demonstration presents an inexpensive method of testing small-scale size effects in forming processes, which can be altered easily to produce different shapes and clearances.
|
47 |
The impact of interconnect process variations and size effects for gigascale integrationLopez, Gerald Gabriel 16 November 2009 (has links)
The objective of this research is to demonstrate the impact of interconnect process variations, line-edge roughness and size effects on interconnect effective resistivity and ultimately chip performance. The investigation is accomplished through five tasks. In Task I, a new closed-form effective resistivity model, which is a function of line-edge roughness (LER), surface specularity and grain boundary reflectivity, is derived. In Task II, a critical path model is enhanced by including interconnect parasitics using the model in Task I. This enhancement also involves an extensive survey of foundry process data to shed light on the device resistance estimation used in the critical path model in Task II. Task III develops a Monte Carlo (MC) simulation framework called the Fast Interconnect Statistical Simulator (FISS). Using the latest International Technology Roadmap for Semiconductors (ITRS) projections, the FISS projects the impact of interconnect process variations and size effects onto high performance microprocessor units (HP-MPUs). Task IV fabricates metallic interconnect test structures with sub-100nm line-widths. The fifth task statistically calibrates the model from Task I using resistivity data measured from the test structures in Task IV.
|
48 |
Size effects in out-of-plane bending in elastic honeycombs fabricated using additive manufacturing : modeling and experimental resultsMikulak, James Kevin 06 February 2012 (has links)
Size effects in out-of-plane bending stiffness of honeycomb cellular materials were studied using analytical mechanics of solids modeling, fabrication of samples and mechanical testing. Analysis predicts a positive size-effect relative to continuum model predictions in the flexure stiffness of a honeycombed beam loaded in out-of-plane bending. A method of determining the magnitude of that effect for several different methods of constructing or assembling square-celled and hexagonal-celled materials, using both single-walled and doubled-walled construction methods is presented. Hexagonal and square-celled honeycombs, with varying volume fractions were fabricated in Nylon 12 using Selective Laser Sintering. The samples were mechanically tested in three-point and four point-bending to measure flexure stiffness. The results from standard three-point flexure tests, did not agree with predictions based on a mechanics of solids model for either square or hexagonal-celled samples. Results for four-point bending agreed with the mechanics of solids model for the square-celled geometries but not for the hexagonal-celled geometries. A closed form solution of an elasticity model for the response of the four-point bending configuration was developed, which allows interpretation of recorded displacement data at two points and allows separation the elastic bending from the localized, elastic/plastic deformation that occurs between the loading rollers and the specimen’s surface. This localized deformation was significant in the materials tested. With this analysis, the four-point bending data agreed well with the mechanics of solids predictions. / text
|
49 |
Sum frequency generation study of CO adsorbed on palladium single crystal and nanoparticles : adsorption and catalytic oxidation as a function of sizeWang, Jijin 05 December 2013 (has links) (PDF)
The CO reaction on metals is of great interest experimentally and theoretically because it serves as a model system to understand molecular chemisorption and catalyzed reactions on metals. This thesis aims at progressing along the general trends of surface science: bridging the pressure and material gaps in the study of catalysts. Sum Frequency Generation (SFG) is at the heart of this work. It involves a nonlinear optical process with an IR pulse induced coherent first-order polarization up-converted by a visible pulse into a second-order polarization at the sum frequency. In this thesis it is used to record CO vibrational spectra on the Pd nanoparticles (NP)/MgO/Ag(100) to understand the adsorption and oxidation thanks to its specific advantages in surface science: sensitivity and surface selectivity. The questions proposed are the possible roles of the adsorption sites which only exist on the NPs, the effect of the size of NPs and the presence of oxygen on the CO adsorption and catalytic reactivity, the effect of adsorption of oxygen (from 'normal' - dissociative chemisorption to 'sub-surface'), the variation of reactivity of CO in the different sites when pressure and temperature increase. (1) We have studied CO adsorption on Pd(100) as a reference. Below a CO coverage of 0.5 ML SFG results confirm previous IRAS studies. Above 0.5 ML, we have observed in much more details than previously two vibrational bands assigned to CO at compressed and uncompressed bridge sites, of which we have measured the frequency and intensity and the decoherence time T₂ as a function of coverage. (2) Pd NP size effect on CO adsorption is studied (from Pd(100) to particles with about 300 atoms). At pressures below 10⁻³ mbar the CO spectra on a coalesced layer and on large NPs are dominated by the same bridge band as on Pd(100). The CO singleton frequency decreases with coverage, revealing the evolution of chemisorption with size. DFT calculations done at ENS Lyon reveal that the main mechanism is the strain induced by the substrate which increases the Pd-Pd bondlength, favors electron back donation to CO, weakens the CO bond and probably reinforce the CO-metal bond. (3) Because of a limit of our maximal temperature, we have to study the CO catalytic oxidation in an excess of oxygen to avoid self-poisoning by CO. The results strongly suggest that bridge sites are the key sites in catalysis in our experimental condition. However, while a fraction of bridge sites are more reactive on NPs, a large fraction of them seem less reactive with respect to Pd(100). The reactivity of CO on (100) facet decreases at smaller NP size. It emerges the ideal that the reaction proceeds by the most reactive sites, and that the other sites are only reservoir in reactivity, if the diffusion between sites are high enough. Oxygen modifies the adsorption of co-reactants. In the case of CO + O / Pd NPs / MgO, below 10⁻⁴ mbar oxygen does not seem to influence significantly CO adsorption; between 10⁻³ and 10⁻¹ mbar the spectroscopic signature of CO compression disappears, and above 1 mbar a new class of a top sites appears, suggesting that some oxygen species (perhaps "subsurface") favors CO adsorption on linear sites. A pump-probe experiment has been done to compare the effect of pump on different adsorption sites. All this confirms the interest of SFG vibrational spectroscopy for catalysis. An additional contribution of this thesis to SFG is the study of the spectro-temporal aspects of SFG emission. SFG spectra containing several bands are modeled in details based on an ODT/Au system and compared to experimental spectra, showing that in SFG spectra are affected by the spectro-temporal shape of the visible laser. The standard deconvolution method used in the literature is only approximate. Accurate spectro-temporal spectrum modeling is required to evaluate precisely the relative intensities when several bands are present.
|
50 |
Fracture Behaviour including Size Effect of Cement Stabilised Rammed EarthHanamasagar, Mahantesh M January 2014 (has links) (PDF)
Rammed earth is a monolithic construction formed by compacting processed soil in progressive layers. Rammed earth is used for the construction of load bearing walls, floors, sub base material in roadways, airport runways, taxiways, aprons, foundations and earthen bunds. Soil, sand, cement and water are the ingredients used for the preparation of cement stabilized rammed earth (CSRE) specimens. The cracking in a rammed earth structure is due to the development of tensile stresses. The tensile stresses are generated due to various causes like unequal settlement of foundation, eccentric loading and / or lateral loading such as wind pressure and earthquake on an earth structure. The cracking in a rammed earth structure causes the failure of its intended function. For example formation of crack may lead to the instability of an embankment slope. And earthen dam can be destroyed gradually by erosion of soil at the crack surface (Harison et al. 1994). Hence, it becomes important to understand the fracture behaviour of cement-stabilized rammed earth structures. Well focused studies in understanding the fracture behaviour of CSRE structures are scanty. The present work attempts to address some issues on the fracture behaviour of CSRE including size effect.
Through an experimental programme material properties viz. compressive strength, tensile strength and stress-strain relationships are generated for two chosen densities, 17 and 18.5 kN/m3 of CSRE both in dry and saturated condition. Soil composition, density, cement content and moisture content of the specimen during testing influence the characteristics of CSRE. In the present investigation keeping the cement at 10%, the density is varied choosing a soil-sand mixture having optimum grading limits. The basic raw materials used are soil, sand, cement and water in the ratio of 1 : 1.5 : 0.25 : 0.34 by weight.
The strength properties studied alone are inadequate to predict the mechanics of fracture due to the presence of microscopic flaws, cracks, voids and other discontinuities. Therefore, some linear elastic fracture parameters such as mode I fracture toughness (KIc), critical energy release rate (GIc), net section strength (f net) and notch sensitivity are calculated, presuming that CSRE is still a brittle material because it is yet to be confirmed that CSRE is a quasibrittle material. In fact, in the present work, it is shown that CSRE has significant amount of softening. A comprehensive experimental work has been undertaken to test CSRE beam specimens for two densities, three sizes of beam and three notch to depth ratios under three point bending (TPB) in a closed loop servo-controlled machine with crack mouth opening displacement control. Results indicate that the CSRE in dry condition exhibits a greater resistance to fracture than the saturated specimen. The variation of net section strength with the notch depth is not significant. Therefore the CSRE material is notch insensitive, implying that it is less brittle.
An experimental program was undertaken to determine the nonlinear fracture parameters of beam specimens both in dry and saturated condition. The influence of moisture content, density, size of the specimen as well as notch to depth ratio of the specimen on RILEM fracture energy (G F ) are presented. The GF values increase with increase in density and size of the specimen, while they decrease with increase in notch to depth ratio. Results clearly show that the total energy absorbed by the beams (W OF ) and RILEM fracture energy (G F ) for all specimens tested in dry state are higher compared to the specimens tested in saturated state, indicating that the dry specimen offers higher resistance to the crack propagation.
The RILEM fracture energy GF , determined from TPB tests, is said to be size dependent. The assumption made in the work of fracture is that the total strain energy is utilized for the fracture of the specimen. The fracture energy is proportional to the size of the fracture process zone (FPZ), which also implies that size of FPZ increases with increase in the un-cracked ligament (d - a) of beam. This also means that FPZ is proportional to the depth d for a given notch to depth ratio, because for a given notch/depth, (d - a) which is also is proportional to d because is a constant. This corroborates the fact that fracture energy increases with size. Interestingly, the same conclusion has been drawn by Karihaloo et al. (2006). They have plotted a curve relating fracture process zone length and overall depth the beam. In the present study a new method namely Fracture energy release rate method proposed by Muralidhara et al. (2013) is used. In the new method the plot of GF /(d - a) versus (d - a) is obtained from a set of experimental results. The plot is found to follow power law and showed almost constant value of GF /(d - a) at larger ligament lengths. This means the fracture energy reaches a constant value at large ligament lengths reaffirming that the fracture energy from very large specimen is size-independent. This Fracture energy release rate method is used to determine size-independent fracture energy GRf , based on the relationship between RILEM fracture energy and the un-cracked ligament length. The experimental results from the present work agree well with the proposed new method. Similarly, the method is extended to determine nominal shear strength τv for large size beam. Results show that for both densities GRf decrease in saturated condition, while in dry condition as the density is increased from 17 to 18.5 kN/m3 the GRf decrease by 7.58%, indicating that the brittleness increases with higher density. The τv for large size beam increases with density both in dry and saturated condition.
The size effect method for evaluating material fracture properties proposed by Bazant (1984) is applied to cement stabilised rammed earth. By measuring the peak loads of 2D geometrically similar notched beam specimens of different sizes, nonlinear fracture parameters such as fracture energy (Gf ), fracture toughness (KIc), effective length of the fracture process zone (Cf ), brittleness number (β), characteristic length (l 0) and the critical crack tip opening displacement (CT ODc) are determined for both dry and saturated conditions. The crack growth resistance curves (R-curve) are also developed for dry and saturated specimens.
In the size effect method, for both densities 18.5 and 17 kN/m3 the values of nonlinear fracture properties, namely G f , Cf , KIc, CT ODc and l 0 are lower for the saturated specimen compared to those of the dry specimen. In dry condition as the density is increased from 17 to 18.5 kN/m3 the Gf decreases to 13.54%, indicating that the brittleness increase with higher density. The areas under the load-displacement and load-CMOD curves are a measure of the fracture energy and these areas are low for saturated specimens. The crack growth resistance curves (R-curve) plotted using the size-effect law from peak loads are the measure of resistance against crack growth R. The value of R is high for dry specimen compared to that of the saturated specimens. During aggregate pullout or the opening of crack, the interlock or friction between the crack surfaces may cause the energy dissipation through friction and bridging across the crack. Therefore the wet friction in case of saturated specimen must be smaller resulting in more brittleness compared to the larger dry friction for dry specimen.
In the present investigation the Digital Image Correlation (DIC) technique is used to study the FPZ properties in cement stabilised rammed earth. The MATLAB package written by Eberl et al. (2006) is suitably modified and used for image correlation to suit our requirements. CMOD measured using DIC technique is validated by comparison with the CMOD measured using clip gauge. The FPZ properties such as the development of FPZ and crack opening displacements at different loading points as well as the influence of notch/depth ratio on FPZ length (lFPZ ) are evaluated for both dry and saturated conditions. At peak load the lFPZ are about 0.315 and 0.137 times the un-cracked ligament length respectively for specimens tested under dry and saturated conditions. In dry and saturated states the FPZ length decreases as the ratio increases. Lower values of lFPZ in saturated specimen indicates that it is relatively more brittle compared to dry specimen.
|
Page generated in 0.0366 seconds