• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 13
  • 12
  • 12
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 20
  • 20
  • 19
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Effects of Molecular Structure and Design on the Plasticizer Performance Through Coarse-Grained Molecular Simulation

Panchal, Kushal January 2018 (has links)
Plasticizers are a commonly used additive used in the polymer industry to make the plastic more pliable by reducing the glass transition temperature, Tg and Young's modulus, Y. As the plasticizer aids in polymer process-ability and making it suitable for applications from industrial cables to sensitive medical equipment, the mechanism of plasticization is not fully understood. There are three theories used to explain plasticization: lubricity theory, gel theory, and free volume theory. The latter is a fundamental concept of polymer science that is used to calculate many polymer properties, but they all do not give a clear picture on plasticization. With molecular dynamics (MD) simulation, a coarse-grained (CG) model - which consist of a simple bead-spring model that generalizes particles as a bead and connects them via a finite spring – is used to explore the impact of plasticizer size throughout the polymer system. The interaction characteristics of the plasticizer is explored by representing the plasticizer molecules as a single bead of varying size. This gives better control on the variability of the mixture and pinpoint the significant contributions to plasticization. A path to understanding the the mechanism of plasticization will give insight in glass formation, and can later be used to find an optimal plasticizer architecture to minimize the migration of the additive by tuning the compatibility. Current results show a decoupling between the Tg and Y of the polymer-additive system. The overall understanding of finite-size effects shows: as additive of increasing size is added, the polymer free volume increases which in-turn would decrease the Y, but Tg is shown to increase because the polymer and additive are not as mobile to reduce caging effect of monomeric units. / Thesis / Master of Applied Science (MASc)
62

Deformation mechanism of metastable austenitic steel with TRIP effect and associated kinetics of deformation induced martensitic transformation / TRIP効果を示す準安定オーステナイト鋼の変形機構と変形誘起マルテンサイト変態の速度論

Mao, Wenqi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23196号 / 工博第4840号 / 新制||工||1756(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 田中 功, 教授 乾 晴行 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
63

Size Effect in Polymeric Materials: the Origins and the Multi-physics Responses in Ultrasound Fields

Peng, Kaiyuan 06 January 2021 (has links)
The size effect in the thermo-mechanical behavior of polymeric materials is a critically important phenomenon and has been the subject of many researches in past decades. For example, polystyrene (PS), a widely used polymeric material, is brittle at the bulk state. When the dimensions decreases to the nanoscale, such as PS in nanofibers, their ductility becomes orders higher than their bulk state. In recent years a number of diverse applications, such as scaffolds in tissue engineering, drug delivery devices, as well as soft robotics, are designed by utilizing the unique properties of polymers at nanoscale. However, the inside mechanism of the size dependency in polymeric materials are still not clear yet. In this dissertation, systematic computational and experimental studies are made in order to understand the origins of the size effect for one- and two-dimensional polymeric materials. This framework is also expanded to investigate the size-dependent multi-physics response of functional polymeric materials (shape memory polymers) which are actuated by high-intensity focused ultrasound (HIFU). Our computational studies are based on molecular dynamic (MD) simulations at the atomistic scale, and experimentally-validated finite element models at the bulk level. From bottom-up direction, molecular dynamics can reveal the mechanisms of the size effect in polymers at molecular level, and help predict properties of the bulk materials. In this research, MD simulations are performed to track the origins of the size-effect in the mechanical properties of PE and PS nanofibers. In addition, the size-dependent thermal response of functional polymeric films is also studied at the atomistic scale by utilizing molecular dynamics simulations to predict the thermal properties and actuation mechanisms in these materials when subjected to HIFU fields. From top-down direction, experiments and finite element analysis, are also conducted in this research. An experimentally-validated finite element framework is built to study the mechanical response of shape memory polymers (SMPs) triggered by HIFU. As an external trail towards application fields, a SMP composite with enhanced shape memory ability and also a two-way SMP are synthesized. A smart gripper and also a self-rolling structure are designed by using these SMPs, which approves that these SMPs are good components in designing soft robotics. Finally, The influence of evaporation during fiber forming process is investigated by molecular dynamics simulation. It is found that the formation of the microstructure of polymeric fibers at nanoscale depends on the balance of stretching force and evaporation rate when the fiber is forming. / Doctor of Philosophy / Thermomechanical properties of a thin fiber, a thin film and a cube made of a polymer are significantly different. Although, based on the extensive research that has been performed in recent years our understanding of this size-dependency is advanced to a great degree in the past decades, there are still many unanswered basic questions that can only be addressed by performing computational and experimental investigation at different length scales, from atomistic up to bulk level in polymers. In this research we target exploring some unknown aspects of the size dependency in the thermomechanical properties of polymers by investigating their deformation mechanisms at different length scales. As the first step, we will investigate the mechanical properties of polymeric fibers. For these fibers, the mechanical properties are strongly connected to the fiber's diameter. The prevailing hypothesis is that this size dependency is closely related to the thickness of the surface layer of the nanofibers. Our results show some unknown origins behind the size dependency of the mechanical properties in polyethylene (PE) and polystyrene (PS) nanofibers, which originate from the deformation mechanisms at the atomistic scale. In addition, not just the mechanical properties, the thermal properties and response of functional polymers subjected to an external stimulation are also related to their size. For example, the thermal conductivity of a fiber, a sheet and a cube may be significantly different. Our study shows the thermal responses of different polymers triggered by ultrasound are also different. The size and the type of the polymers will both have influence on the final temperature in the polymeric materials, when the polymeric materials are heated by same ultrasound source. We also have applied our computational and experimental frameworks to investigate this phenomenon. In addition, we also used a new shape memory polymer composite and a two-way shape memory polymer on designing soft robotics-like structures. Overall this research indicates that both mechanical response and thermal responses of polymers are highly related to their dimension. Taking advantage of these unique size effects, and by tailoring this property, diverse devices can be made for being used in a broad range of applications.
64

Effect of twist, fineness, loading rate and length on tensile behavior of multifilament yarn

Rypl, Rostislav, Vořechovský, Miroslav, Sköck-Hartmann, Britta, Chudoba, Rostislav, Gries, Thomas 03 June 2009 (has links)
The idea underlying the present study was to apply twisting in order to introduce different levels of transverse pressure. The modified structure affected both the bonding level and the evolution of the damage in the yarn. In order to isolate this effect in a broader context, additional parameters were included in the experiment design, namely effects of loading rate, specimen length and filament diameter (directly linked to the fineness of the yarn). These factors have been studied in various contexts by several authors. Some related studies on involved factors will be briefly reviewed.
65

Stability and sorption capacity of montmorillonite colloids : Investigation of size fractional differences and effects of γ-irradiation

Norrfors, Karin January 2015 (has links)
Bentonite clay is intended to form one of the barriers in most repositories of spent nuclear fuel located in granite. One important function of the bentonite barrier is to retard transport of radionuclides in the event of waste canister failure. Bentonite has a high sorption capacity of cations and its main constituent is montmorillonite. In contact with groundwater of low ionic strength, montmorillonite colloids can be released from bentonite and thereby control transport of radionuclides sorbed onto the colloids. In colloid transport in bedrock fractures, size separation of clay colloids may occur due to physical and chemical interactions with the bedrock fracture surface. This may enhance or retard the overall transport of radionuclides, depending on the sorption capacities and stability of the differently sized clay colloids. The bentonite barrier will be exposed to γ-radiation from the spent nuclear fuel. Irradiation affects surface-related properties of bentonite. If an average sorption capacity value cannot be used for all colloid sizes or if sorption is affected by exposure to γ-irradiation, corrected sorption capacity values would give higher resolution in current reactive transport models. In order to study the size separation process, a protocol was developed and successfully applied to fractionate montmorillonite into different-sized colloid suspensions by means of sequential or direct centrifugation. The stability and sorption capacity were studied using these fractions. Both stability and sorption capacity were found to be similar for all colloid sizes. Bentonite exposed to γ-radiation sorbed less divalent cations with increasing radiation dose. The effect was not large enough to have any impact on diffusion. The presence of bentonite enhanced irradiation-induced corrosion of copper under anaerobic atmosphere. An average sorption capacity value for montmorillonite can be used for all colloid sizes in reactive transport models. The effect of γ-irradiation on sorption capacity is sufficiently large to require consideration in transport modelling. / Bentonite är planerad som en av barriärerna i de flesta slutförvar av använt kärnbränsle. Bentonite har en hög sorptionskapacitet för katjoner. Den huvudsakliga beståndsdelen av bentonit är montmorillonit. Montmorillonitkolloider kommer att frigöras från bentonitbufferten i kontakt med grundvatten av låg jonstyrka och på så vis styra transporten av sorberade radionuklider. Under den kolloidala transporten i bergsprickorna kan en separation med avseende på storlek uppstå genom interaktioner mellan kolloiderna och bergytan. Detta kan få till följd att den genomsnittliga transporten av radionuklider bromsas eller tilltar beroende på sorptionskapaciteten och stabiliteten av de olika kolloidstorlekarna. Bentonitbarriären kommer även att utsättas för γ-bestrålning från det använda kärnbränslet, vilket påverkar dess ytrelaterade egenskaper. Om inte ett medeltal för sorptionskapaciteten är giltigt för alla kolloidstorlekar eller om sorptionen påverkas av γ-bestrålning, behövs nya sorptionskapaciteter bestämmas och impliceras för noggrannare transportmodeller. En metod för att separera montmorillonitkolloider med avseende på storlek via direkt och stegvis centrifugering har utvecklats. Stabiliteten och sorptionskapaciteten för dessa fraktioner har studerats. Både stabilitet och sorptionskapacitet visade sig vara lika för alla kolloidstorlekar. Bestrålad bentonit sorberar mindre andel divalenta katjoner med ökad dos bestrålning. Effekten är dock inte stor nog för att slå igenom i diffusionsexperimenten. Förekomst av bentonit ökar även den strålningsinducerade korrosionen av koppar under anaeroba förhållanden. Ett medelvärde för sorptionskapaciteten kan användas för alla kolloidstorlekar i transportmodeller. Effekten av γ-bestrålning är dock stor nog för att implementeras i modellerna. / <p>QC 20150213</p>
66

Investigation Of Geometrical Factors For Determining Fracture Toughness With The Modified Ring Test

Alpay, Ceyda 01 September 2008 (has links) (PDF)
Modified Ring specimens are of the shape of discs having a hole inside and flattened ends. These specimens are used for determination of Mode I fracture toughness. Finite element program, named ABAQUS, is used for numerical modeling for finding stress intensity factors. Varying disc geometries were used for the experiments and numerical modeling in which size of the flat ends, radius of the hole inside, and external radius of the specimen were varied. Experiments were done by using pink Ankara andesite. Effects of internal hole radius, external disc radius and size of the flat ends on both stress intensity factor and fracture toughness were studied. In order to compare the results, fracture tests with semi-circular specimens under three point bending (SCB) were also performed. From a similar previous study, fracture toughness values of gray andesite were recalculated and compared to the fracture toughness values of pink andesite for varying geometrical factors. Size effect studies were performed as well for varying diameter of core specimens.Fracture toughness values of andesite were found to increase with increasing specimen size. Fracture toughness of 100 mm specimens was determined as 1.11&plusmn / 0.07 MPa&amp / #8730 / m, whereas fracture toughness of 75 mm specimens was 0.96&plusmn / 0.08 MPa&amp / #8730 / m. 100 mm or larger diameter specimens were suggested for the fracture toughness determination with the modified ring tests.
67

Colloidal gold nanoparticles for cancer therapy: effects of particle size on treatment efficacy, toxicology, and biodistribution

Lee, Kate Y. J. 29 March 2011 (has links)
Gold nanoparticle has emerged as an attractive platform for drug delivery applications by complementing the existing drug delivery carriers. Currently, only a few gold nanoparticle-based anticancer drug delivery systems have been reported, compared to the polymer-based delivery systems. Additionally, there is still a lack of understanding for the behavior and fate of the gold-drug conjugate in the body that further attention is required. The overall goal of this thesis is to investigate the in vivo behavior of colloidal gold nanoparticle and its therapeutic efficacy in an animal model, especially in a drug delivery application. To achieve this goal, we investigated the feasibility of using colloidal gold nanoparticle as an anticancer agent delivery vehicle for treatment of cancer. Then, long-term clearance, toxicity, and biodistribution of colloidal gold nanoparticle were studied to further aid in understanding of using colloidal gold nanoparticle as a drug delivery platform. In particular, two representative sizes of gold nanoparticles, 5nm and 60nm, were investigated for the size effect on the therapeutic efficacy, toxicity, biodistribution, and clearance in cancer nanotherapy. We believe that nanoparticle size plays a critical role in not only delivering the drug to the target site but also determining the in vivo behavior such as biodistribution and clearance. By choosing an appropriate size scale for the system, we successfully used the small-sized gold nanoparticles for drug delivery applications, which also displayed no apparent toxicity with desirable clearance from the biological system. This work is significant by providing an insight on a potential ideal candidate for drug delivery carrier for cancer nanotherapy.
68

Characterizing, imaging, and quantifying the environmental behavior and biological interactions of metal-based nanoparticles

Zhang, Wen 24 June 2011 (has links)
Due to the rapid expansion of nanotechnology and the increasing applications of nanomaterials under production and development, it is essential evaluate the potential impacts on human health, ecosystems and the environment. This study is specifically focused on the interactions between metal-based nanoparticles (NPs) and target cells, aiming at exploration of the fundamental knowledge essentially useful for understanding nanotoxicity and its connections with particle properties. The whole structure of this study can be divided into three levels: the first level is to quantitatively understand physicochemical properties of NPs of interest and their dynamic changes under varying environmental conditions. The second level is to evaluate the biological interactions of representative NPs with a specific focus on the size-dependent adsorption processes, interfacial forces, cellular disruption, and membrane damages. The third level is to develop effective, accurate, and valid tools based on atomic force microscopy (AFM) to characterize NPs in terms of the nanoscale hydrophobicity and the nanoscale electric properties, which are most relevant and important properties in the bio-nano interactions. Overall, this study systematically investigated the kinetic environmental behaviors, biological interactions, and unique nano-properties of metal-based NPs, which should be of interest to people in application and implication of nanotechnology.
69

Influence of Self-trapping, Clamping and Confinement on Hydrogen Absorption

Pálsson, Gunnar Karl January 2011 (has links)
The dissociation of hydrogen molecules at surfaces is the first step in the absorption process. If the absorbing material is covered by an oxide, this layer will determine the effective uptake rate of an underlying absorbing material. This effect is illustrated when determining the rate of transport of hydrogen through amorphous aluminium oxide layers. The transport rate was determined to be strongly thickness dependent. Hydrogen absorbed in a transition metal causes a volume expansion generated by a strain field around the absorbed hydrogen. This strain field causes a self-trapping of the hydrogen and a temperature dependent distribution in the atomic distances. The local strain field generated by the self-trapping process is found to be crucial for understanding both the hydrogen induced volume expansion as well as the diffusion of hydrogen. Ab-initio molecular dynamics simulations were used to reveal the temperature dependence of the unbinding of the hydrogen and the local strain field and its influence on the diffusion rate. The symmetry of the local strain field is also important for phase formation in metallic films and superlattices which are clamped to a substrate. As the thicknesses reduced from 50 to 10 nm thick vanadium films, substantial finite size effects become apparent in the phase diagrams. The volume change associated with the strain field cannot be accurately measured using x-ray diffraction because of its sensitivity to local arrangements of atoms. X-ray and neutron reflectivity were found to be more reliable probes of global effects of the sumof the local strainfields. Finite size effects in extremely thin V layers were also explored in metallic superlattices composed of iron and vanadium. The co-existence region, composed of a hydrogen gas and a solid-like phase, was found to be suppressed by at least 100 K to below 300 K. The hydrogen-hydrogen interaction can also be influenced by the electronic states in the non hydrogen absorbing layers, as demonstrated when comparing hydrogen absorption in Fe/V and Cr/V superlattices. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 728
70

Grain size effect on dielectric properties of ferroelectrics and relaxors / Grūdų dydžio įtaka dielektrinėms feroelektrikų ir relaksorių savybėms

Ivanov, Maksim 30 December 2014 (has links)
The aim of doctoral dissertation „Grain Size Effect on Dielectric Properties of Ferroelectrics and Relaxors“ by Maksim Ivanov is to investigate, how grain size of ceramics and powders of a few ferroelectrics and relaxors influences macroscopic dielectric properties. The studied materials are powders of a relaxor PbMg⅓Nb⅔O3 (PMN), ceramics of a relaxor with a spontaneous phase transition PbSc½Nb½O3 (PSN), ceramics of a ferroelectric 0.36BiScO3-0.64PbTiO3, and ceramics of Ba2SnO4, which were compared to a better investigated BaSnO3. Investigations were performed in broad frequency (100 Hz – 55 GHz) and temperature (30 K – 1000 K) ranges. Experimental investigations and modelling showed, that bulk properties of relaxor materials are heavily influenced by polar nanoregions, but they do not fully determine them. Morphology of the material (i.e. grain size of ceramics) determines growth and interactions of the nanoregions, thus influencing bulk properties. Moreover, effective medium approximation can explain evolution of dielectric properties of ferroelectrics and relaxors only if dependence of bulk properties on grain size is known. The most interesting result is, that there exist polar entities in ferroelectrics, which are different from ferroelectric domains and are similar to polar nanoregions in relaxors. Their contribution to dielectric permittivity can be comparable to all other contributions. Dimensions of these entities depend on grain size in accordance with Kittel's law. / Maksimo Ivanovo daktaro disertacijos tema yra “Grūdų dydžio įtaka dielektrinėms feroelektrikų ir relaksorių savybėms”. Šio darbo tikslas yra ištirti, kaip keramikų ar miltelių grūdų dydis įtakoja makroskopiškai stebimas kelių feroelektrikų bei feroelektrinių relaksorių dielektrines savybes. Tirtos medžiagos yra klasikinio relaksoriuas PbMg⅓Nb⅔O3 (PMN) milteliai, relaksoriaus su savaiminiu feroelektriniu faziniu virsmu PbSc½Nb½O3 (PSN) keramikos, feroelektriko 0.36BiScO3-0.64PbTiO3 keramikos, bei Ba2SnO4 keramiką, kuri buvo palyginta su kiek labiau žinoma BaSnO3 keramika. Tyrimai buvo atlikti plačiame dažnių (100 Hz – 55 GHz) bei temperatūrų (30 K – 1000 K) intervaluose. Eksperimentiniai tyrimai bei modeliavimai parodė, kad polinės nanosritys labai stipriai įtakoja tūrines relaksorių savybes, tačiau jų neapsprendžia. Medžiagos morfologija (antai keramikų grūdų dydis) lemia nanosričių augimą bei tarpusavio sąveikas, tokiu būdų įtakojamos tūrinės savybės. Be to, efektyvios terpės aproksimacija gali paaiškinti feroelektrikų ir relaksorių dielektrinių savybių priklausomybę nuo grūdų dydžio tik, jei žinomas sąryšis tarp dydžio ir tūrinių savybių. Įdomiausia yra tai, kad feroelektrikuose yra objektų, kurie nėra feroelektriniai domenai ir yra panašūs į relaksorių polines nanosritis. Jų indėlis į dielektrinę skvarbą gali būti palyginamas su visų kitų procesų (pvz. domenų sienelių ir polinių modų) indėliais. Šių objektų dydis priklauso nuo grūdų dydžio pagal Kittel'io dėsnį.

Page generated in 0.0409 seconds