• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 121
  • 78
  • 31
  • 16
  • 15
  • 14
  • 8
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 611
  • 361
  • 217
  • 188
  • 118
  • 109
  • 99
  • 98
  • 93
  • 88
  • 85
  • 81
  • 79
  • 79
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Determination of Thermal Properties Using Embedded Thermocouples

Lister, Nicholas Anthony 01 January 2010 (has links)
The Purpose of this thesis is to experimentally demonstrate an inversion analysis technique, developed by Dr. Jay Frankel (UTK), that utilizes transient temperature data from probes embedded at known locations in a material. This allows one to determine thermal properties (thermal diffusivity and thermal conductivity) of the material, surface temperature, and the surface heat flux as they change with time. Dr. Frankel’s inversion method can be used to determine surface temperature and heat flux of a one-dimensional semi-infinite slab based on the transient data from one or two embedded probes, if the thermal conductivity and thermal diffusivity of the material are known. Frankel’s theory suggests that the thermal properties of the material can be determined if transient data from two thermocouple (TC) probes at known locations and the heat flux at the surface are known. This thesis investigates finding the thermal properties and surface temperature of materials using a two embedded thermocouple approach. As an initial check to the inversion analysis, the theoretical temperature solution for a one-dimensional semi-infinite slab was used. This validated that the analysis could converge to the constant thermal properties for the theoretical material. An experiment was run again to provide data for the materials copper and aluminum. Using a real material is fundamentally different from using theoretical determined (analytical) data, because the thermal properties for a real material vary with temperature. Since the inversion analysis converged to a constant solution for the theoretical temperatures, it was believed that the real material will converge to a solution. However, it was seen that the thermal diffusivity for the real materials never converged to the expected value. Although, when a constant handbook value for the thermal diffusivity is used to calculate the thermal conductivities from the experimental temperature data collected from the internal probes, the inversion analysis resulted in good agreement with experiment.
42

A Finite Element Approach to Reinforced Concrete Slab Design

Deaton, James B 18 July 2005 (has links)
The objective of this study was the development of a procedure in GT STRUDL to design reinforced concrete flat plate systems based on the results of finite element analysis. The current state-of-practice of reinforced concrete flat plate design was reviewed, including the ACI direct design and equivalent frame techniques, the yield line method, and the strip design method. The principles of these methods along with a critical evaluation of their applicability and limitations were presented as motivation for a finite element based design procedure. Additionally, the current state-of-the-art of flat plate design based on finite element results was presented, along with various flat plate modeling techniques. Design methodologies studied included the Wood and Armer approach, based on element stress resultants, and the resultant force approach, based on element forces. A flat plate design procedure based on the element force approach was embodied in the DESIGN SLAB command, which was implemented in GT STRUDL. The DESIGN SLAB command provides the user the ability to design a slab section by specifying a cut definition and several optional design parameters. The procedure determines all nodes and elements along the cut, computes the resultant moment design envelope acting on the cross-section, and designs the slab for flexure in accordance with provisions of ACI 318-02. Design examples presented include single-panel flat plate systems with various support conditions as well as multi-panel systems with regular and irregular column spacing. These examples allowed for critical comparison with results from experimental studies and currently applied design methods in order to determine the applicability of the implemented procedure. The DESIGN SLAB command was shown to produce design moments in agreement with experimental data as well as conventional design techniques for regular configurations. The examples additionally showed that when cuts were not oriented orthogonally to the directions of principle bending, resulting designs based on element forces could significantly under-reinforce the cross-section due to significant torsional effects.
43

Early-age concrete temperature and moisture relative to curing effectiveness and projected effects on selected aspects of slab behavior

Ye, Dan 15 May 2009 (has links)
Concrete curing has long been realized to be important to produce durable concrete. Curing compound is widely used to cure concrete in the field. The current curing membrane evaluation method ASTM C 156, however, is incapable of distinguishing the curing compound quality and guiding the curing practice in the field. A new laboratory curing membrane evaluation protocol is developed in this study. It has the ability to rank the quality of curing compound and guide curing practice in the field according to the field ambient weather conditions and the type of curing compound. A series of field tests were conducted to investigate the key factors that affect the curing effectiveness in the field conditions. A finite element program, temperature and moisture analysis for curing concrete (TMAC2), is updated to solve the coupled and nonlinear heat transfer and moisture transport problems in early-age concrete. Moisture capacity is induced into the TMAC2, which makes it unique to characterize the self-desiccation. A full scale concrete pavement test study was conducted at the FAA National Airport Pavement Test Facility (NAPTF) near Atlantic City, New Jersey. In this study, the material properties, i.e. thermal conductivity and moisture diffusivity, were backcalculated from field data. Thereafter, backcalculated material properties were used to forward-calculate the temperature and moisture histories of all other sections. High order shear deformable theory is used to model the concrete slab curling and warping behavior because of highly nonlinear temperature and moisture gradients. The maximum shear strain is obtained a couple of inches below the concrete slab. This might account for the occurrence of delamination.
44

Connection of modular steel beam precast slab units with cast-in-place closure pour slabs

Brush, Natalie Camille 17 February 2005 (has links)
Jointless bridges are advantageous in removing mechanical joints which are a known cause of bridge deterioration. Elimination of joints provides a smoother riding surface and removes the possibility of de-icing salts penetrating the deck and corroding the deck reinforcing and underlying bridge superstructure. Jointless bridges are traditionally constructed by monolithically casting the entire bridge deck on beams after they have been erected. However, this process requires extensive in-field formwork and lengthy traffic closures. The Texas Department of Transportation proposes a new method of constructing jointless bridges using prefabricated girder-and-deck units connected on-site with cast-in-place closure pours. This new system will expedite construction and reduce disturbances to the traveling public. The objective of this experimental study was to investigate the behavior of the cast-in-place closure pour slab and to determine if it responds to wheel loads in the same way as a traditional monolithic continuous deck. The effects of the cold joints and discontinuous steel details are the focus of the research work.
45

Seismic tomography constraints on reconstructing the Philippine Sea Plate and its margin

Handayani, Lina 17 February 2005 (has links)
The Philippine Sea Plate has been surrounded by subduction zones throughout Cenozoic time due to the convergence of the Eurasian, Pacific and Indian-Australian plates. Existing Philippine Sea Plate reconstructions have been made based primarily on magnetic lineations produced by seafloor spreading, rock magnetism and geology of the Philippine Sea Plate. This dissertation employs seismic tomography model to constraint the reconstruction of the Philippine Sea Plate. Recent seismic tomography studies show the distribution of high velocity anomalies in the mantle of the Western Pacific, and that they represent subducted slabs. Using these recent tomography data, distribution maps of subducted slabs in the mantle beneath and surrounding the Philippine Sea Plate have been constructed which show that the mantle anomalies can be related to the various subduction zones bounding the Philippine Sea Plate. The high velocity mantle anomalies are clearly coincident with Wadati-Benioff zones in the upper mantle. The lower mantle anomalies, although distributed in the “transition zone” (500-1000 km) as stagnant slabs in some cases, can clearly be mapped as continuations of upper mantle subduction zones. Reconstructing the subduction of the slabs now in the mantle best fits Philippine Sea Plate reconstructions that involve the minimal or simplest rotations. Northward movement of the Philippine Sea Plate, WNW subduction of the Pacific Plate since Eocene time (~50 Ma), and northward subduction of the Indian/Australian Plate along Indonesia best explain the subducted slab mantle anomalies. The origin of the eastern plate boundary was a transform zone that evolved into a subduction zone a few million years before the Pacific Plate changed its movement. In addition, the initiation of this subduction zone might possibly be one of the triggers of the Pacific Plate motion changes. The 90 degree rotation of the Philippine Sea Plate including southward plate subduction at its northern boundary proposed in the reconstruction by Hall (2002) is not supported by seismic tomography evidence for slab distribution in the mantle beneath the Philippine Sea region. A hypothesis of minimal rotation of the Philippine Sea Plate, supported by the seismic tomography, guides the reconstruction model presented.
46

Determination of Thermal Properties Using Embedded Thermocouples

Lister, Nicholas Anthony 01 January 2010 (has links)
The Purpose of this thesis is to experimentally demonstrate an inversion analysis technique, developed by Dr. Jay Frankel (UTK), that utilizes transient temperature data from probes embedded at known locations in a material. This allows one to determine thermal properties (thermal diffusivity and thermal conductivity) of the material, surface temperature, and the surface heat flux as they change with time. Dr. Frankel’s inversion method can be used to determine surface temperature and heat flux of a one-dimensional semi-infinite slab based on the transient data from one or two embedded probes, if the thermal conductivity and thermal diffusivity of the material are known. Frankel’s theory suggests that the thermal properties of the material can be determined if transient data from two thermocouple (TC) probes at known locations and the heat flux at the surface are known. This thesis investigates finding the thermal properties and surface temperature of materials using a two embedded thermocouple approach. As an initial check to the inversion analysis, the theoretical temperature solution for a one-dimensional semi-infinite slab was used. This validated that the analysis could converge to the constant thermal properties for the theoretical material. An experiment was run again to provide data for the materials copper and aluminum. Using a real material is fundamentally different from using theoretical determined (analytical) data, because the thermal properties for a real material vary with temperature. Since the inversion analysis converged to a constant solution for the theoretical temperatures, it was believed that the real material will converge to a solution. However, it was seen that the thermal diffusivity for the real materials never converged to the expected value. Although, when a constant handbook value for the thermal diffusivity is used to calculate the thermal conductivities from the experimental temperature data collected from the internal probes, the inversion analysis resulted in good agreement with experiment.
47

Design recommendations for CIP-PCP bridge decks

Kwon, Ki Yeon 30 January 2013 (has links)
Precast, prestressed concrete panels (PCPs) and cast-in-place (CIP) concrete slabs are commonly used in Texas and elsewhere. Because PCPs are placed between bridge girders, and CIP concrete slabs are cast over the PCPs, PCPs act as formwork, cost and time for construction can be reduced. However, current designs may be further optimized if it can be shown that the reinforcement in the CIP deck can be reduced. Another issue involves cracking of PCP during fabrication and transportation to the site. The goal of this dissertation is to recommend changes to the CIP-PCP bridge decks that will lead to more cost-effective bridges. The first phase of the research is to suggest an optimized reinforcement layout for cast-in-place (CIP) slabs. Because the capacity of these decks is much greater than the design loads, a decrease in top-mat reinforcement will have minimal effect on the margin of capacity over design loads. Two options were selected, reduced deformed-bar reinforcement; and reduced welded-wire reinforcement. These two options are evaluated through restrained-shrinkage tests and field applications. The second phase of this dissertation is to reduce cracks in precast, prestressed concrete panels (PCPs) which occur during fabrication, handling, and transportation. Most cracks in PCPs are collinear (occur along the strands). They can be reduced in two ways. The first is to reduce initial prestress. The second is to place additional transverse reinforcement at edges. / text
48

Investigations of Upper Mantle Structure using Broadband Seismology

Wagner, Lara Suzanne January 2005 (has links)
This dissertation explores the uses for data collected at broadband seismic stations to investigate upper mantle structures. In the Barents Sea region, we use seismic waveform modeling on data collected from arrays in Norway and Finland to investigate the nature of the Hales discontinuity in this area. We find that the unusually high velocities required by the move-out of the diffracted first arrival requires a discontinuity below the Moho, which we believe is probably caused by a phase transition from spinel to garnet peridotite. In Chile and Argentina, we use data collected during the Chile Argentina Geophysical Experiment to perform a regional travel time tomography in order to investigate the nature of the mantle above this unusual subduction zone. The northern half of the study area (between 30° and 33°S) is characterized by the central Chilean flat slab segment, where the descending Nazca slab dives to 100 km depth and then flattens, traveling horizontally for hundreds of kilometers before resuming its descent into the mantle. The Nazca plate in the southern half of the study area has a relatively constant dip of about 30°. The southern half exhibits normal arc volcanism roughly above the 100 - 125 km contours of the downgoing slab. The northern half has had no active volcanism in the past 2 Ma, and underwent an eastward displacement of arc volcanism beginning ~10 Ma. The northern half is also remarkable for the basement-cored uplifts of the Sierras Pampeanas. Our study of the upper mantle above the southern half indicates low P wave velocities, low S wave velocities, and high Vp/Vs ratios below the arc, consistent with partial melt. Above the flat slab segment we find low Vp, high Vs, and low Vp/Vs ratios. While the nature of the material responsible for these velocities cannot be uniquely determined, the velocities indicate it must be dry, cold, and depleted. In the transition from flat to normal subduction geometries, we find velocities consistent with frozen asthenosphere, which may have been displaced by the advancing flat slab during the Miocene.
49

Application of the Grillage Methodology to Determine Load Distribution Factors for Spread Slab Beam Bridges

Petersen-Gauthier, Joel 16 December 2013 (has links)
Transverse load distribution behavior amongst bridge girders is influenced by many parameters including girder material properties, spacing, skew, deck design, and stiffening element interactions. In order to simply and conservatively approximate the bridge superstructure load distribution between girders, the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications contain load distribution factor (LDF) equations for many common bridge types. The Texas Department of Transportation (TxDOT) had recently developed a new design for bridge superstructures that utilizes a spread configuration of prestressed concrete slab beams. AASHTO does not contain LDFs for this type of bridge so the load sharing behavior of this superstructure must be investigated further. TxDOT has funded the Texas A&M University Transportation Institute (TTI) to design, model, construct, test, and analyze a full scale spread slab beam bridge. In addition to this testing, an existing slab beam bridge in Denison, Texas will be instrumented and observed for supplementary slab beam behavior data. To predict bridge behavior, computer models of the Riverside experimental bridge and of the Denison field bridge were developed using both the grillage and finite element methods of analysis. The experimental results from the Riverside and Denison bridges will not be collected by the conclusion of this thesis so a third bridge with existing experimental data, the Drehersville, Pennsylvania bridge, was also modeled for calibration purposes. The work presented by this thesis focuses on how to accurately model transverse load distribution relationships and LDFs for use in bridge design. The analysis covered is concentrated primarily on the grillage method, with the finite element analysis as part of the larger project scope. From this analysis it was determined that the grillage method was able to accurately model bridge LDFs as compared to FEM modeling and experimental results, for spread slab beam and spread box beam bridges. The critical loading configurations for all bridges placed two trucks side by side and as far to one edge of the bridge as possible. It was also determined that at an ultimate loading case, the load is distributed much more evenly across the deck than at service loading.
50

Punching shear of flat reinforced-concrete slabs under fire conditions

Smith, Holly Kate Mcleod January 2016 (has links)
This thesis examines punching shear response of reinforced-concrete flat slabs under fire conditions. The shear behaviour of concrete in fire is relatively poorly understood compared to its flexural response. Failures such as the Gretzenbach car park failure in Switzerland (2004) have prompted concerns over the punching shear capacity of flat slabs in fire. The shear behaviour of reinforced-concrete in fire depends on degradation of the individual material properties with temperature, their interaction, and more recently recognised, the effects of restrained thermal expansion. Through experimental testing this thesis aims to build a foundation understanding of the punching shear behaviour of flat reinforced-concrete slabs in fire conditions. A series of shear blocks, tested after exposure to elevated temperature (realistic fire temperature), were used to develop an understanding of the effects of elevated temperature on the shear transfer performance of reinforced-concrete. These tests allowed the complex interplay of shear-carrying mechanisms at ambient temperature to be extended to the case of post-elevated temperature. Fifteen slab-column punching shear specimens were tested under both applied load and extreme heating. In particular, the effects of restrained thermal expansion were experimentally investigated by altering the support conditions of the slab-column specimens. A purpose-built restraint frame allowed the boundary support conditions to be either fully restrained or unrestrained. This experimental series is the only series to have tested restrained specimens at elevated temperatures, though previous researchers have simulated the thermal restraint effects and reported the importance of restrained thermal expansion and curvature on the behaviour of punching shear. Parameters of slab thickness and reinforcement ratio were also varied to investigate their respective impacts on punching shear behaviour at elevated temperature. The thicker 100 mm reinforced slabs failed in punching shear, whereas the 50 mm and 75 mm thick slabs failed in flexure-shear mechanisms and the unreinforced slabs failed in flexure. Clear behavioural differences were observed between specimens with different support conditions. Unrestrained 100 mm thick slabs under sustained load failed soon after heating began, whereas none of the corresponding restrained specimens failed during heating. One restrained, heavily reinforced specimen failed during cooling, whilst under sustained load. This is the first recorded punching shear failure during the cooling phase of an elevated temperature test and may also be the first recorded test specimen ever to have failed during the cooling phase of an elevated temperature test. This failure highlights the unknown and potentially unsafe behaviour of structures during the cooling phase. Further structural investigation of the cooling behaviour of concrete flat slabs after exposure to fire, needs to be undertaken. Most of the specimens’ central deflection was away from the heat source (in the direction of loading) during the whole test, irrespective of support condition. The test setup was assessed to investigate the unusual slab-column deflection away from the heat source, however the complex behaviour observed during the tests cannot currently be explained. It is assumed that the degradation in concrete properties and non-linear material behaviour dominates over the thermal expansion of the slabs. Quantitative and qualitative comparisons are presented, though the quantitative data is impacted by size effect, non-repeatable heating application between tests and jack friction influences on specimens with low capacities. Eurocode 2 punching shear prescriptive elevated temperature design, extends the ambient temperature equation for elevated temperature use, by degrading the temperature-dependant parameters by factors. Support conditions are not considered, with the code specifically telling the designer not to consider in-plane thermal expansion effects, therefore consequently ignoring the premature punching shear failure that can occur. Furthermore, the ambient temperature equation is based on the regression of available experimental data at the time and does not consider the reinforcement as a shear transfer mechanism. The experimental capacities of the 100 mm thick, reinforced slabs that failed in pure punching shear mechanism were similar to the Eurocode 2 punching shear prescriptive design capacity, when directly compared. The unrestrained support condition was shown to be consistently, not conservatively predicted by Eurocode 2, whereas the restrained support condition capacities were conservatively predicted. It is comforting to know that the Eurocode 2 design predicts the restrained supported slabs conservatively, as real buildings are more likely to have supports closer to the restrained condition rather than the unrestrained support condition. A sensitivity analysis of the Eurocode 2 prescriptive design equation shows it is highly sensitive to the concrete strength degradation and not the variable, cp, which was used to make a support condition comparison in this thesis. This indicates how the Eurocode 2 equation for punching shear capacity lacks in its consideration of whole structural behaviour. The Critical Shear Crack Theory has been proposed as the background to a harmonised shear design approach, called Model Code 2010. The Critical Shear Crack Theory was safe in predicting the experimental punching shear capacities. There were large variances for the 100 mm thick slabs, however they are consistent with the original model comparison to test data. An expansion of the Critical Shear Crack Theory for elevated temperature requires further validation with experimental restrained thermal expansion tests, such as those presented in this thesis. Finally, a digital image correlation technique has been proven to be a reliable method to measure structural displacements of concrete at elevated temperatures. Digital image correlation allowed the crack locations and slab rotation angles to be visualized throughout testing. No other measurement techniques are able to provide similar versatility in fire testing such as that presented herein.

Page generated in 0.0371 seconds